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Timeline

Aristotle discussed how typhoons are formed.

Leonardo da Vinci depicted turbulence in fluids -

even vortices generated by the aortic valve!

René Descartes: “vortex theory of everything” .

Euler: Mathematical formulation of vorticity
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Subsequent generations of mathematical
physicists

Helmholtz, Kirchhoff
W. Thomson (Kelvin) + Tait, J.J. Thomson...

Arnold (1966): Euler equations

solid body ∼ perfect fluids

Ebin-Marsden (1970): the hard analysis

Marsden-Weinstein (1983):

vorticity is a momentum map!
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Vorticitists form a large community

Mathematicians, Physicists

Engineers, Biologists

For mathematicians (I fear forgetting many):

P. Newton, Point vortex dynamics in the post-Aref era

2014 Fluid Dyn. Res. 46 031401
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Flow vortices in the aortic root:

in vivo 4D-MRI confirms predictions of Leonardo da Vinci
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Tribute to Engineers

Prandtl, von Kármán (see next)

Bénard, Coanda

Joukowski, Korolev

Taylor, Lighthill



http://allanellenberger.com/dr-theodore-von-karman-father-of-the-supersonic-age/

http://allanellenberger.com/dr-theodore-von-karman-father-of-the-supersonic-age/






My fu paper

(topic suggested by Marsden and Aref in my

post-doc, 1982)
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II. Short review:

Vortices on Surfaces
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Vortices on the sphere

Gromeka (1851-1889, MR0056525), Zermelo (1899)

Bogomolov (1977), Kimura/Okamoto (1987),

Many papers appeared since the 2000’s

Aref, Borisov/Mamaev, Cabral, Newton, Boatto,

Dritschel, Simo, Kidambi, Montaldi, Marsden, Patrick,

Pekarsky, Roberts, Schmidt, Tronin, Naranjo, Garćıa-

Azpeitia, ...

(SORRY FOR MANY OMISSIONS!)
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EDOs for vortices in a sphere of radius R

If the sum
∑

Γj 6= 0 there is an uniform counter-vorticity in
the background.

Bogomolov, Dynamics of vorticity at a sphere, 1977

https://link.springer.com/article/10.1007/BF01090320

The Hamiltonian involves the Green function of spherical Laplacian.
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Planar vortices in domains with boundary

C.C. Lin (1916-2013)

https://history.aip.org/phn/11603035.html

PhD in Aeronautics, 1944
California Institute of Technology, Pasadena,
under von Kármán.
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J. Hally (J. Math. Phys. 21:1, 211-217, 1980)

ds2 = h2(z, z)|dz|2

h2(zn, zn) żn =
N∑

k6=n

−i
Γk

zn − zk

+ i Γn
∂

∂zn
ln
(
h(zn, zn)

)
, n = 1, ..,N

Hally suggests that for a closed genus zero surface one could
use the stereographic projection, Σ ≡ C ∪∞ = S2.
and the above equations would be still OK.

Caveat: when
∑N

i=1 Γi 6= 0 there is an extra term, that is

nonlocal: it involves ∆−1h (JK and Stefanella Boatto).
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Motivation for vortices on curved surfaces
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Vortices on compact surfaces Σ (any genus)

Gg(s1, s2) = Green function of Laplace-Beltrami operator

Rg(s) = lims′→s G(s′, s)− 1
2π

lnd(s′, s) (Robin function)

Ωg = area form of the metric g.

Boatto/Koiller, Vortices on Closed Surfaces, Fields Institute 73, 2015

https://link.springer.com/chapter/10.1007/978-1-4939-2441-7_10
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Metrics related by a conformal factor g̃ = h2g

Ω̃collective(s1, · · ·, sN) =
N∑
`=1

κ`h
2(s`)ω(s`) .

H̃ = H(s1, ..., sN)−
1

4π

N∑
`=1

κ2
` log (h(s`))−

κ

Ã(S)

N∑
`=1

κ`∆−1
g h

2(s`)

where

κ =
N∑
`=1

κ`.

The last term vanishes when the sum of the vorticities is

zero (which is the case for the vortex pair systems).
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C.Ragazzo: single vortex moving on genus ≥ 2

R is not constant for Bolza’s surface

(genus 2 having most discrete symmetries)

C. Ragazzo, The motion of a vortex on a closed surface of constant negative

curvature, Proc. Royal Society A Math. Phys. Eng. Sci. 473(2206):20170447

(2017)
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Experimental project

(being planned by our group + Ragazzo)

Numerical study of vortex pairs on Bolza’s surface.

Motivation: on a compact manifold of constant

negative curvature the geodesic flow is chaotic.

(Anosov flows are not only mixing, they are even

Bernoullian.)

But the vortex pair problem on a compact surface

is never fully chaotic.

What insights could this study produce?

20



Remark: ’Steady’ hydrodynamical metrics

on noncompact surfaces

Given prescribed circulations at its ends there is a

(unique) metric such that R is constant.

This theorem extends a result by Gustafsson for

planar domains.

C. Ragazzo, H. Viglioni, Hydrodynamic Vortex on Surfaces, J. Nonlinear Sci 27,
1609-1640 (2017)

Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal

fluid in simply and multiply connected domains, (Technical Report, http://www.

math.kth.se/~gbjorn/theorem) (1979)
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(Rescaled) Hamiltonian system for a vortex pair

Ωpair = π∗1ω− π∗2ω

F (s1, s2) = exp (−H) =
exp(G(s1, s2))√

exp(R(s1))
√

exp(R(s2))

Alternative expression for F

F (s1, s2) = d(s1, s2) exp (B(s1, s2)

B(s1, s2) =

[
G(s1, s2)−

log d(s1, s2)

2π

]
−
R(s1) +R(s2)

2
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Diagonal stability for all time

Suppose that Batman’s function is bounded from

below. When the initial positions of the vortex pair

are taken sufficiently near the diagonal, then the

dynamics stays forever close to the diagonal.

Proof. It is immediate. We have d(s1(t), s2(t)) ≤ FoMo, where Fo
is the initial value of F and

Mo = maxS×S exp(−B(s1, s2)).

Therefore we can make d(s1(t), s2(t)) < ε for all time, by choosing
an initial condition with

0 ≤ Fo < ε/Mo.
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This is not true when S has boundaries.

The simplest example is a vortex pair in the half

plane y ≥ 0 with the euclidian metric.

Approaching the boundary in a symmetric way,

they split apart in opposite directions.
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Query

The discrete symmetry

(s1, s2)→ (s2, s1)

reverses time.

One may consider the quotient space

S × S/{(s1, s2) ≡ (s2, s1)}

Advantage for topological arguments?
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For differential geometry ’in the large’

MaxF = ‘hydrodynamical diameter”.

Must Estimate!!!

Observe that F is smooth. Nonsmoothness of d

and B “cancel out” at conjugate (cut) locus.

Critical values of F of are the equilibrium points.

When is F a Morse function?

F = 0 at the diagonal and F > 0 outside of it.

Query: Let T = small tubular neighborhood of

diagonal. Compute H∗(S × S/T ).
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Query: Morse functions on S × S - diagonal

Let S a closed surface of genus κ. Poincaré polynomials:

pS = 1 + 2κx+ x2

pS×S = (1 + 2κx+ x2)2 = 1 + 4κx+ 2(1 + 2κ2)x2 + 4κx3 + x4

F c = {F ≤ c} = tubular neighborhood of S for small c > 0.

Let M = maxF.

H∗(F
c) = H∗(S) for small c > 0 , H∗(F

M) = H∗(S × S)

We know the Betti numbers at the minimum and maximum.

Question: Can we infer the possible number and types of

critical points that should occur in between?
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Question for symplectic field theorists

One would like to re-build S × S starting with T , the small
tubular neighborhood of the diagonal.

What would be a ”minimal” Morse function?
(smallest number of critical points)

For an index j, how a “handle” Dj × D4−j is going to be
added?

When is F = d exp (B) Morse?

Implications for vortex pair dynamics?
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Batman function

governs the motion of a vortex pair

B(s1, s2) =

[
G(s1, s2)−

log d(s1, s2)

2π

]
−
R(s1) +R(s2)

2

• B is well defined in S × S and is symmetric

• B vanishes along the diagonal, as well as dB, the

differential

• Smooth within the injectivity radius
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B is an yet unexplored object

in geometric function theory.

For a general metric its expansion near the diag-

onal may require tools from elliptic operators à la

Hormander (using a parametrix).

One can reduce the study to constant curvature

metrics.

For genus ≥ 2 and curvature -1:

Anilatmaja Aryasomayajula is computing bounds

for G,R,B,F in terms of injectivity radius and first

eigenvalues of Laplacian.
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III. Aim of this talk:

We go (slightly) beyond Y. Kimura’s assertion:

”vortex dipoles do geodesics”
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Testing Kimura’s conjecture: the catenoid

(for short times)

JK and Stefanella Boatto, Vortex pairs on surfaces

AIP Conference Proceedings 1130, 77 (2009)
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Testing Kimura’s conjecture
on the triaxial ellipsoid

(short times)
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Integrability of triaxial ellipsoid geodesics

Letter from Jacobi to Bessel
December 28 1838

“Ich habe vorgestern die geodätische Linie für ein Ellipsoid mit

drei ungleichen Achsen auf Quadraturen zurückgefürt. Es sind

die einfachten Formeln von der Welt, Abelsche Integrale,

die ich in die bekannten elliptischen verwandeln, wenn man

2 Achsen gleich setzt.”

The day before yesterday, I reduced to quadrature
the problem of geodesic lines on an ellipsoid with
three unequal axes. They are the simplest formu-
las in the world, Abelian integrals, which become
the well known elliptic integrals if 2 axes are set
equal.”
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Vortex pairs at a distance

Poincaré map. a = 1, b = 4, c = 9, H = −60
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In another talk ...

some results for vortex pairs on genus zero surfaces

with Cesar Castilho and Adriano R. Rodrigues

• Equilibria of vortex pairs: linearization

• Antipodal symmetry: an invariant submanifold.

• Triaxial ellipsoid ; Double faced elliptical region

• Surfaces of revolution

38





Main result in this talk:
perturbation of dipole geodesic using a blow-up

vs ∈ T 1(S) = U(S) , α ∈ (−r, r)

s− = exp (−αJvs) , s+ = exp ( +αJvs)

2r = injectivity radius
J = π/2 rotation

M = U(S)× (−r, r) maps to a large neighborhood
of the diagonal of S × S.

It blows up the diagonal, keeping the direction of
approach.
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Theorem 1.

Denote D = Levi-Civita covariant derivative.

ṡ = vs +α2

[
(3m2(vs) +

1

2
K(s))vs− dm2(V1)Jvs

]
+O(α4)

Dṡ vs = −α2

[
dm2(V3) +

1

6
(∇K · Jvs) +O(α2)

]
Jvs

α̇ = −α3 dm2(V2) +O(α5)

This proves Kimura’s assertion for dipoles:

α ≡ 0 implies Dṡ ṡ ≡ 0
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Will explain (in next slides)

Frame V1, V2, V3 and its dual θ1, θ2, θ3 (geometry)

Quadratic term m2 : U(S)→ R (topology)

Vi are used customarily in ’tensor tomography’, and is a nice
way to describe the Levi-Civita connection in U(S).

m2 is the leading term in the Batman function expansion.

It captures, in the small (i.e, for closeby vortex pairs) the

influence of the manifold topology.
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Hamiltonian structure in M = U(S)× (−r, r)
(explicit formulae/proofs in extra slides)

Theorem 2. Using the frame V1, V2, V3 one can make explicit
the pull back of ω(s+)−ω(s−) in S×S to the modified phase
space M via

(vs, α) 7→ (exp (−αJvs), exp ( +αJvs))

where α ∈ (−r, r) is a dynamic variable (distances to the
diagonal) and 2r is the injectivity radius.

M is a folded symplectic space at α = 0 (blow up at the diagonal).

Symplectic form involves Jacobi fields along geodesic s− to s+.

Its expansion in powers of α can be done at any desired order.

The Hamiltonian expands as F = 2α(1 + α2m2(vs) +O(α4)).
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Pull back to TS together with a dummy scaling ε

Let vs ∈ TS 7→ E(vs) = (exp ( − Jvs), exp (Jvs)) ∈ S × S and
then take the rescaling vs → εvs. Denote g[ : TS → T ∗S the
Legendre transform, and Ωo = g∗[Ωcan the pullback of the
canonical form of T ∗S.

Theorem 3. (suited for Hamiltonian perturbation methods)

E∗εΩpair/2ε ∼ d
[
|vs|2 (1−

1

6
K(s) ε2) θ2 + · · ·

]
= Ωo + ε2 Ω1 +O(ε4)

Ωo = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2) , Ω1 = −
1

6
K(s) Ωo +

|vs|2

6
(∇K · Jvs) θ2 ∧ θ3

F/2ε = |vs| exp (B) , B(vs, ε) = m2

(
vs

|vs|

)
|vs|2ε2 +O(ε4)

For ε = 0 we recover the geodesic flow (Ωo, |v|).
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The frame V1, V2, V3 in Tr(S)

Tr(S) = {v ∈ TS | |v| = r } , T1(S) = U(S)

Pγ(t) = parallel transport operator along γ.

Φ1(t): rotation of angle t in TrS: vs→ Rt vs

Φ2(t) = (γo(t) , γ̇o(t)), γo(t) = exp (vs, t)

( geodesic flow: γ̇o(t) = Pγo(t)(vs) )

Φ3(t) : parallel transport of vs along geodesic γ1 with
initial condition J vs

Φ3(t) = (γ1(t) , Pγ1(t)(vs)), γ1(t) = exp (Jvs, t).

Vi = infinitesimal generators of the Φi(t)
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Bundle picture: Levi-Civita
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Commutation relations

V1 is tangent to the fibers of the principal bundle

S1 ↪→ Tr(S)→ S

V2 and V3 span horizontal spaces, projecting to vs and Jvs.

[V1, V2] = V3 , [V3, V1] = V2, [V2, V3] =
K(s)

r2
V1,

Denoting θ1, θ2, θ3 the dual coframe of V1, V2, V3

dθ1 = −
K(s)

r2
θ2 ∧ θ3 , dθ2 = −θ3 ∧ θ1 , dθ3 = −θ1 ∧ θ2.

T. Leveuvre (section 2.4.2 (2.28)-(2.30))

https://thibaultlefeuvre.files.wordpress.com/2016/04/memoire.pdf
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The function m2: quadratic part of B

F = 2|α| exp (B)

B(vs, α) = m2(vs)α
2 +O(α4)

The influence of the global topology is encoded in

m2 : U(S)→ R .

and the directional derivatives dm2(Vi).
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Examples of m2 and validation of the ODEs

• Round sphere (K = 1): m2 ≡ −1/6

• Hyperbolic half plane (K = −1): m2 ≡ −1/3

• Half plane with K = 0 : m2 = − 1
y2
o

yo = from midpoint

Independent of direction vs

We checked the ODEs in U(S)×R with the vortex

pair equations in S×S for validation. See the extra

slides.
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Round cylinder and flat tori

Group symmetry: the pair keeps the same relative positions
in the covering plane.

Cylinder Green function: by elementary functions.

X = (x, y) ∈ R× S1, y ≡ y + 2π , V = (a, b), a2 + b2 = 1

Exponential map: X± = X ±αJ(a, b) = (x, y)±α (−b, a) .

We computed using the Green function:

m2 =
1

6
(b2− a2)

Tori: require elliptic functions but the behavior is similar.

There is a steady drift from the instantaneous geodesic.

Curvature is not enough to capture the dynamics.

The cylinder topology matters even in the small.



Conclusions

Vortex pairs divorce approaching boundaries.

On a compact boundaryless surface closeby vortex

pairs remain close for all time.

As predicted by Kimura, dipoles follow geodesics.

However, for vortex pairs at a small distance, the

dynamics drifts as O(distance2).

Even in the small, vortex pairs are topology probers.
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Very much like geodesics, vortex pairs could be a

tool for differential geometry in the large.

Only more so!

Up for grabs:

Vortex pairs on compact surfaces of genus ≥ 2.

Continuation of periodic geodesics for F = c > 0,

small c.

Applying symplectic field theory methods for global

results.



Thank you!

(many extra slides now follow

please circulate with care: everything to be submitted...

But collaborations are welcome!!)
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Contents of extra slides

A. Vortex pair in the round cylinder: steady drift from geodesic.

B. Informations on Green and Robin functions.

C. Details on the pull back map E : TS → S × S. See pg. 69 for the
deformation

1

2ε
E∗εΩpair ∼ d

[
|vs|2 (1−

1

6
K(s) ε2) θ2

]
= Ωo + ε2 Ω1 +O(ε4)

Ωo = Ωg = g∗[Ωcan = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)

Ω1 = −
1

6
K(s) Ωg +

|vs|2

6
(∇K · Jvs) θ2 ∧ θ3

D. Blow up approach: M = U(S)× (−r, r) and the symplectic form matrix
via Jacobi fields.

E. Examples of computing m2 and Theorem validations in examples.

F. Some papers mentioned in the presentation.

G. Outline of numerical projects.

H. A note on von Kármán.

51



A. Some details for the round cylinder

Educated guess: the midpoint s(t) does a cylinder geodesic. However, there is
no obligation to do it at right angle with the direction from s− to s+.

In fact, we will find the angle between the trajectory of the center point s and
the direction of the relative position between the vortices as a function of α,
that will be constant.

G(X1, X2) =
1

2π
log
√

cosh z − cos θ , z = x2 − x1 , θ = y2 − y1

Dropping the 1/2π, the ODEs with F = exp(G) =
√

cosh z − cos θ are

ẋ1 = −
∂F

∂y1
= −

1

F
sin(y1 − y2) , ẋ2 =

∂F

∂y2
=

1

F
sin(y2 − y1)

ẏ1 =
∂F

∂x1
=

1

F
sinh(x1 − x2) , ẏ2 = −

∂F

∂x2
= −

1

F
sinh(x2 − x1)

Denote s = (x, y), vs = (a, b) and for 0 ≤ α < π,

(x±, y±) = (x, y)± αJ(a, b) = (x, y)± α (−b, a) , a2 + b2 = 1, .

Then s = (x, y) satisfies

ṡ = (ẋ, ẏ) =
1

F
(sin(2aα), sinh(2bα)) , F =

√
cosh(2bα)− cos(2aα).
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Robin function is constant (and we may set to zero) and a quick computation
gives

F =
√

2α
(

1 +
1

6
(b2 − a2)α2 +O(α4)

)
m2 =

1

6
(b2 − a2) with a2 + b2 = 1.

Thus we see that m2 does not depend on the center point s = (x, y), BUT it
depends on direction vs = (a, b).

Checking the pulled back ODES:

Expanding (sin(2aα), sinh(2bα)/F and neglecting the inocuous factor
√

2:

ṡ = (ẋ, ẏ) = (1−
α2

6
(b2 − a2) +O(α4))

[
(a, b) +

2

3
α2(−a3, b3) +O(α5)

]
ṡ = (ẋ, ẏ) = (1−

α2

6
(b2 − ab2)) (a, b) +

2

3
α2 (−a3, b3) + · · ·

Now, we may decompose, since a2 +b2 = 1, (−a3, b3) = (b2−a2)(a, b)+ab(−b, a).

ṡ =
(

1 + (−
1

6
+

2

3
) (b2 − a2)α2

)
(a, b) +

2

3
abα2J(a, b) + · · ·



Validations

ṡ =
(

1 +
1

2
(b2 − a2)α2

)
(a, b) +

2

3
abα2 J(a, b) + · · ·

The term with (−1
6

+ 2
3
) (b2− a2) = 1

2
(b2− a2) coincides with the predicted 3m2

and moreover,

2

3
ab = 2(−b, a)

[
−1/6 0
0 1/6

] [
a
b

]
= −dm2(V1),

again as predicted. Also note that the parallel transport for flat metrics is trivial,
so dm2(V2) = dm2(V3) ≡ 0.

Historical note

The study of vortex motions on the flat cylinder has a notable history, starting
with von Karman’s papers on his vortex pair “streets”. From our calculations
we confirm that the street moves in the y-direction when a = 0 (the parallel
configuration) or αa = π/2 (staggered).

von Karman showed that relative to the moving frame with velocity ẏ, the
former is unstable, but the latter is stable: it an ubiquitous phenomenon in
fluids. Several papers have been published for streets of more than two vortices
(Aref and Stremler).
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Flat tori

Double periodic arrays have also been observed in Nature (see the papers by
Stremler/Aref).

Let T = C/L, where L is the lattice generated by 1 and

τ = a+ bi, b > 0.

Denote q = eπiτ so |q| = e−πb < 1. Up to a constant C(τ), the Green function
G(z, w) for the Laplace operator on T is given by

G(z, w) = −
1

2π
ln |θ1(z − w)|+

1

2b
(Im(z − w))2 + C(τ),

where the theta function θ1(z; τ) is the exponentially convergent series

θ1(z; τ) = 2

∞∑
n=0

(−1)n q(n+1/2)2
sin((2n+ 1)πz) , z = x+ iy.

Robin’s functions are constant (Boatto and K.).

... continues
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Place z at the center of a fundamental domain. These Green functions have
always three critical points on w: one of them corresponding to the vertices of
the fundamental domain, and the other two are the half periods.

It was shown shown (Lin-Wang, Ann. of Math. 172:2 (2010), 911–954) that
there are special 1-parameter families in τ with an extra pair of singular points.

Humberto Viglioni described the structure of these families inside the modular
surface.

We leave as a challenge computing the coefficient m2(a, b; τ) for a pair

s± = (x, y) + α(−b, a).

One needs to expand G(s+, s−)− log |2α|/2π , which requires some expertise in
elliptic functions. As in the case of the cylinder, m2 does not depend on position
of the midpoint (x, y). The issue is the dependence on τ .

For the Green function of the “true” (curved) torus in R3 see J. S. Marshall,
Proc. R. Soc. A 469, (2013) 20120479.
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B. Green function of Laplace-Beltrami operator

S = closed orientable two-dimensional surface (with-
out boundary) with a Riemannian metric g.

ω = dS = area form

∆ = ∆g = Laplace-Beltrami operator

d(s, so) = geodesic distance with respect to g.

∆G(s, so) = −
1

Area(S)
+ δ(s, so) ,

∫
S
G(p, q)dS = 0 ,

G(s, so)− log d(s, so)/2π bounded, G(s, so) = G(so, s).
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G(s, so) smooth outside diagonal. Diverges logarithmically.

G = kernel of the integral operator for Poisson’s equation:

∆−1f(s) =

∫
S

G(s, r)f(r)dS .

Declare ∆−1constant = 0 by convention, so∫
S

∆−1f dS = 0 , ∀f ∈ L2(S).

G(s1, s2) =
∑

λi∈spectrum

1

λi
φi(s1)φi(s2) .

where {φi} is a normalized eigenbasis.
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Robin’s function

Rg(so) = lim
s→so

Gg(s, so)− log dg(s, so)/2π

R is an interesting constant for the round sphere
and flat genus 1 (any modulus).

The fact that R is constant for flat tori requires
some thought, but it is not hard to prove.

J. Steiner, K. Okikiolu: spectral invariants!

Jean Steiner, A geometrical mass and its extremal properties for metrics on S2.

Duke Math. J. 129(1): 63-86 (2005)

K. Okikiolu, A Negative Mass Theorem for Surfaces of Positive Genus

Communications in Mathematical Physics 290(3):1025-1031 (2009)
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For any metric g on S2, up to constant,

Rg(s) =
1

2π
(∆−1

g Kg)(s)

For any metric gφ = exp(2φ)gcan on a torus (any

modulus), up to a constant,

Rg(s) =
1

2π
(∆−1

g Kg)(s)−
1

2π
∆−1 exp (2φ)

More generally, for any genus χ, up to a constant,

Rg(s) =
1

2π
(∆−1

g Kg)(s)−
χ

2π
∆−1 exp (2φ) +Rcan(s)
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Batman function

governs the motion of a vortex pair

B(s1, s2) =

[
G(s1, s2)−

log d(s1, s2)

2π

]
−
R(s1) +R(s2)

2

• B is well defined in S × S and is symmetric

• B vanishes along the diagonal, as well as dB, the

differential

• Smooth within the injectivity radius
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B is an yet unexplored object in geometric function

theory.

For a general metric its expansion near the diag-

onal may require tools from elliptic operators à la

Hormander (using a parametrix).

One can reduce the study to constant curvature

metrics.

For genus ≥ 2 and curvature -1:

Anilatmaja Aryasomayajula is computing bounds

for G,R,B in terms of injectivity radius and first

eigenvalues of Laplacian.
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C. The map

E : vs ∈ TS → (exp (− vs) , exp (vs))

and the pullback of the two form

ω(s+)− ω(s−)
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A neighborhood of the zero section of TS is mapped

to a neighborhood of the diagonal of S × S via the

centered exponential map

E : vs ∈ TS → (exp (− vs) , exp (vs)) .

Combine with the π/2 rotation J : TsS→ TsS.

Esymp = E ◦ J

vs ∈ TS J−→ us = Jvs ∈ TS E−→ (s−, s+) ∈ S × S

s± = exp (± us) = exp (± Jvs)
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Kimura’s assertion

Pulled back to TS, the vortex pair system is

E∗sympΩpair(= J∗E∗Ωpair) , F = F (exp (− Jvs), exp (Jvs))

Introduce dummy parameter ε (no dynamical meaning)

Scaling : vs→ εvs

and expand in powers of ε:

• Will show (tricky): leading term of the pull back

Esymp
ε = E ◦ J ◦ ε scaling

is 2ε times the canonical 2-form of T ∗S.

(as seen in TS via Legendre’s transformation.)

• Easy: leading term of F is: 2ε|vs|.
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Computing next order terms of the deformation

We use a ’magic formula’ by Alejandro Cabrera to compute
the pullback by E∗symp of the 2-form on S × S

• To implement the magic formula, use frame V1, V2, V3

• Find its commutation relations and rewrite in coframe: θi

• Expand the magic formula in a scaling εvs

• Make use of LX = iXd+ diX, X = geodesic flow
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The frame V1, V2, V3 in Tr(S)

Tr(S) = {v ∈ TS | |v| = r } , T1(S) = U(S)

Pγ(t) = parallel transport operator along γ.

Φ1(t): rotation of angle t in TrS: vs→ Rt vs

Φ2(t) = (γo(t) , γ̇o(t)), γo(t) = exp (vs, t)

( geodesic flow: γ̇o(t) = Pγo(t)(vs) )

Φ3(t) : parallel transport of vs along geodesic γ1 with
initial condition J vs

Φ3(t) = (γ1(t) , Pγ1(t)(vs)), γ1(t) = exp (Jvs, t).

Vi = infinitesimal generators of the Φi(t)
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Bundle picture: Levi-Civita

67



Commutation relations

V1 is tangent to the fibers of the principal bundle

S1 ↪→ Tr(S)→ S

V2 and V3 span the horizontal spaces, projecting
respectively to vs and Jvs.

[V1, V2] = V3 , [V3, V1] = V2, [V2, V3] =
K(s)

r2
V1,

Denoting θ1, θ2, θ3 the dual coframe of V1, V2, V3

dθ1 = −
K(s)

r2
θ2 ∧ θ3 , dθ2 = −θ3 ∧ θ1 , dθ3 = −θ1 ∧ θ2.
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Summary: symplectic form expansion up to ε2

1

2ε
E∗εΩpair ∼ d

[
|vs|2 (1−

1

6
K(s) ε2) θ2

]
=

= Ωo + ε2 Ω1 +O(ε4)

Ωo = Ωg = g∗[Ωcan = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)

Ω1 = −
1

6
K(s) Ωg +

|vs|2

6
(∇K · Jvs) θ2 ∧ θ3
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Expanding the Hamiltonian: function m2

1

2ε
F = |vs| exp (B)

B(vs, ε) = Q2(vs, vs)ε
2 +O(ε4)

Q2(vs, vs) = m2

(
vs

|vs|

)
|vs|2

The main influence of the topology is encoded in

m2 : U(S)→ R .

and the directional derivatives dm2(Vi).
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D. Blow up approach: M = U(S)× (−r, r)

s± = exp (±αJvs) , V4 = ∂/∂α

2r = injectivity radius.

D = Levi-Civita covariant derivative.

K = curvature. Vi= vectorfields in U(S)

B(−α,α) = B(exp (−αJvs), exp (αJvs)) = α2m2(vs) +O(α4)

ṡ = vs +α2

[
(3m2(vs) +

1

2
K(s))vs− dm2(V1)Jvs

]
+O(α4)

Dṡ vs = −α2

[
dm2(V3) +

1

6
dK(Jvs) +O(α2)

]
Jvs

α̇ = −α3 dm2(V2) +O(α5)

Will show: this has a folded Hamiltonian structure.

71



Step1: sketch the images in S×S via E
folded
∗ of the

frame in M

Vi, 1 ≤ i ≤ 4.

Step2: compute symplectic brackets

Ωpair(E
folded
∗ Vi, E

folded
∗ Vj)

These images frame almost all of S × S.

(Out: diagonal and conjugate-cut locus)
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Differentiating exp: Jacobi fields shall appear ...

Y, Z = Jacobi fields along the geodesic connecting s±
(starting at s in the direction Jvs) with initial conditions

Y (0) = 0 , Y ′(0) = −vs

Z(0) = vs , Z
′(0) = 0
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End result: relative to frame V1, V2, V3, V4

Ω13 = −Ω31 = −(|Y (α)| + |Y (−α)| )
Ω14 = −Ω41 = −|Y (α)| + |Y (−α)|
Ω23 = −[Ω]32 = |Z(α)| − |Z(−α)|
Ω24 = −[Ω]42 = |Z(α)|+ |Z(−α)|

[Ω] =


0 0 Ω13 Ω14
0 0 Ω23 Ω24
−Ω13 −Ω23 0 0
−Ω14 −Ω24 0 0



Y (0) = 0, Y ′(0) = −vs , Z(0) = vs, Z
′(0) = 0 .
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Using the expansions of the norm of Jacobi fields

Ω13 = −2α+
1

3
K(s)α3 +O(α5)

Ω14 = O(α4)

Ω23 = −
1

3
(∇K · Jvs)α3 +O(α5)

Ω24 = 2− K(s)α2 +O(α4)
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Summary of the blow up approach:

M = U(S)× (−r, r) is folded symplectic

E∗Ωpair = 2θ2 ∧ dα− 2α θ1 ∧ θ3 − α2K(s)θ2 ∧ dα+

+ α3/3 [K(s) θ1 ∧ θ3 − (∇K · Jvs)θ2 ∧ θ3] +O(α4)

E∗Ωpair = dωM +O(α4)

ωM = 2(−α+
1

6
K(s)α3) θ2

F = 2α exp(B(−α, α)) = 2α (1 +m2(vs)α
2 +O(α4))
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Maybe a bit more: an educated guess

E∗Ωpair = d(ω +O(α4))

ω = 2(−α+
1

6
K(s)α3) θ2

We posit that E∗Ωpair is exact, namely

E∗Ωpair = d[f(vs, α) θ2],

with a f(vs, α) in M that can be expressed in terms of

multiindices derivatives in Jvs.
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Details of symplectomorphism approach

A neighborhood of the zero section of TS is mapped
to a neighborhood of the diagonal of S × S via the
centered exponential map

E : vs ∈ TS → (exp (− vs) , exp (vs)) .

Combine with the π/2 rotation J : TsS→ TsS.

Esymp = E ◦ J

vs ∈ TS J−→ us = Jvs ∈ TS E−→ (s−, s+) ∈ S × S

s± = exp (± us) = exp (± Jvs)
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Two Bundle isomorphisms T ∗S ≡ TS

θcan = the canonical 1− form in T ∗S

g[ : TS → T ∗S, v 7→ v[ = g(v, ·) (Legendre)

ω[ : TS → T ∗S, v 7→ vJ[ = g(Jv, ·) .

θg = (g[)∗θcan , Ωg = (g[)∗Ωcan = dθg

θω = (ω[)∗θcan , Ωω = (ω[)∗Ωcan = dθω

Recall J is compatible with Riemannian metric g,

ω(v1, v2) = g(Jv1, v2) .
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Alejandro’s magic formula

P = TS − 0S, Φ : P × R→ P the geodesic flow.

Et(vs) = (exp(−tvs), exp(tvs)).

E∗tΩpair =
∫ t
−t

Φ∗uΩω du = d
∫ t
−t

Φ∗uθω du

θω = (ω[)∗θcan , Ωω = (ω[)∗Ωcan = dθω

Proof. Alejandro says is just the fundamental theorem

of Calculus. But it is kind of tricky!!!
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ε-expansion

With X = generator of geodesic flow,

Eε(vs) = (exp (− εvs), exp (− εvs)).

1

2ε
E∗εΩpair =

∞∑
n=0

ε2n

(2n+ 1)!
L2n
X Ωω

= d

( ∞∑
n=0

ε2n

(2n+ 1)!
L2n
X θω

)
(recall Ωω = dθω)

Proof. Lie bracket expansion of flows.
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Kimura’s assertion

We can show that for ε = 0

Ωg = dθg , Fo = |vs|

We can go further:

How to compute the L2n
X θω ?

Answer in next slides: we can write, in principle,

the ε-expansion for the symplectic form and of the

vortex pair Hamiltonian to any desired order.
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The moving frame V1, V2, V3 in Tr(S)

Tr(S) = {v ∈ TS | |v| = r } , T1(S) = U(S)

Pγ(t) = parallel transport operator along γ.

Φ1 : vs→ Rt vs, rotation of angle t in TrS.

Φ2(t) = (γo(t) , γ̇o(t)), γo(t) = exp (vs, t)

( geodesic flow: γ̇o(t) = Pγo(t)(vs) )

Φ3 : parallel transport of vs for time t along
geodesic γ1 with initial condition J vs

Φ3(t) = (γ1(t) , Pγ1(t)(vs)), γ1(t) = exp (Jvs, t).

The Vi, i = 1,2,3 are the infinitesimal generators.
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Commutation relations

V1 is tangent to the fibers of the principal bundle

S1 ↪→ Tr(S)→ S

V2 and V3 span the horizontal spaces, projecting
respectively to vs and Jvs.

[V1, V2] = V3 , [V3, V1] = V2, [V2, V3] =
K(s)

r2
V1,

Denoting θ1, θ2, θ3 the dual coframe of V1, V2, V3

dθ1 = −
K(s)

r2
θ2 ∧ θ3 , dθ2 = −θ3 ∧ θ1 , dθ3 = −θ1 ∧ θ2.
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Proof. See T. Leveuvre (section 2.4.2 (2.28)-(2.30))

https://thibaultlefeuvre.files.wordpress.com/2016/04/

memoire.pdf

Computations are done in conformal coordinates.

Actually his derivation was done just for U(S). For the

general situation consider the scaled metric g̃ = g/r2

that has the same Euler-Lagrange equations - thus the

same parametrized geodesics and same flows Φj.

Then Tr,gS = Ug̃S in the rescaled metric. Therefore

we can apply the same formulas, replacing K(s) by

K(s)/r2.
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Completing the frame with V4

V4 = V
fold

4 on M = U(S)×< , V4 = V
symp

4 on P = TS−0S .

V
folded

4 (vs, α) = ∂/∂α , V
symp

4 (vs) = vs.

In the latter, used in the symplectomorphism approach,
V
symp

4 is the infinitesimal generator of Φ4(vs, t) = et vs.

In both cases the Lie bracket with the Vi, i = 1,2,3
vanishes. If we correspond M with P via their images
in S × S, we may write, with some abuse of language,

V
symp

4 = |vs|V folded4 , |vs| = α > 0.

Coframe : {θi} , 1 ≤ i ≤ 4 add : dθ4 = 0.
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Outline of derivations

Use Cartan’s LX = iXd+ diX in

θg = |vs|2 θ2

and the structure equations for the θi, i = 1,2,3,4.

Take into account also:

J∗(V1) = V1 , J∗(V2) = −V3 , J∗(V3) = V2 , J∗(V4) = V4

J∗(θ1) = θ1 , J
∗(θ2) = −θ3 , J∗(θ3) = θ2 , J∗(θ4) = θ4 .
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Standard notations

We will denote the projections by

q : TQ→ Q and π : T ∗Q→ Q

θcan = the canonical 1− form in T ∗S

g[ : TS → T ∗S, v 7→ v[ = g(v, ·) (Legendre)

ω[ : TS → T ∗S, v 7→ vJ[ = g(Jv, ·) .

θg = (g[)∗θcan , Ωg = (g[)∗Ωcan = dθg

θω = (ω[)∗θcan , Ωω = (ω[)∗Ωcan = dθω
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Symplectic forms via the coframe θi, i = 1,2,3,4
(Here we are working in P = TS − 0S)

θg(Vvs) = g(vs, q∗Vvs) for Vvs ∈ Tvs(TS)

θg(V2(vs)) = |vs|2

In fact : θg = |vs|2 θ2

d|vs| = |vs| θ4

Ωg = d(|vs|2θ2) = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)
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Proof. The first is just trivial abstract nonsense from

the definitions.

For the second note that the values of the 1-form θg

on V1 and V4 vanish because the flows do not move the

base point. Since π∗(V3) = Jvs, it follows that θg must

also annihilate V3.

Third: The three directional derivatives i = 1,2,3 of

vs vanish because the flows of the Vi, i = 1,2,3, do not

change norms in P . It is easy to see that for V4 = V
symp

4

V4|vs| = |vs| hence d|vs| = |vs| θ4.

Finally d(|vs|2θ2) = |vs|2 θ1 ∧ θ3 + d|vs|2 ∧ θ2.
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Kimura’s assertion

As ε→ 0, the time rescaled vortex system tends to
the geodesic system. More precisely, for ε = 0

Ωg = dθg , Fo = |vs| . Its generator is
1

2|vs|
V2.

Proof. Factors (2ε)−1 in front of the expansions of F
and J∗E∗εΩpair mutually cancel. To leading order

dF ∼ d|vs| = |vs|θ4 .

Claim: the leading term of the symplectic form is

J∗dθω = Ωg = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)

Why?
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Why:

J∗d(|v|2 θ3) = J∗(2|vs|2θ4 ∧ θ3) + |v2|J∗(θ2 ∧ θ1)

We claim that this equals to ....

Ωg = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)

An useful observation:

J∗(V1) = V1 , J∗(V2) = −V3 , J∗(V3) = V2 , J∗(V4) = V4

J∗(θ1) = θ1 , J
∗(θ2) = −θ3 , J∗(θ3) = θ2 , J∗(θ4) = θ4 .

Proof. Simply by doing mental pictures of the corresponding vectorfields along
geodesic curves in S with initial conditions vs or Jvs. For instance we compute
J∗(V3) mentally: we keep the base curve (the geodesic in the direction of Jvs)
and rotate the vectorfield along the curve, (which is the parallel transport of
v2) by π/2. Hence obtaining the geodesic field determined by Jvs, ie.,

(J∗)vs(V3(vs)) = V2(Jvs).
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Computation of the Lie derivatives

Lie derivatives can be computed to any desired order.

The starting point is: θω = |vs|2 θ3. Let us compute the

ε2 term (LX)2
(
|vs|2θ3

)
with X = V2.

LX(|vs|2θ3) = (iXd)(|vs|2θ3) + d
���

���
���

��

iX(|vs|2θ3) =

=
((((

(((
((((

(((
(((

iX (2|vs|2θ4 ∧ θ3) + iX(|vs|2 θ2 ∧ θ1) = |vs|2 θ1

Differentiating once more,

(LX)2
(
|vs|2θ3

)
= LX(|vs|2θ1) = −|vs|2K(s) θ3 .

Since J∗θ3 = θ2, we get finally ...
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Symplectic form expansion up to ε2

1

2ε
E∗εΩpair ∼ d

[
|vs|2 (1−

1

6
K(s) ε2) θ2

]
=

= Ωo + ε2 Ω1 +O(ε4)

Ωo = Ωg = g∗[Ωcan = |vs|2 (θ1 ∧ θ3 + 2θ4 ∧ θ2)

Ω1 = −
1

6
K(s) Ωg +

|vs|2

6
(∇K · Jvs) θ2 ∧ θ3
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Educated guess for the 1-form

The expansion of the pulled back 1-form is(
1−

1

6
K(s) ε2 +O(ε4)

)
θg , θg = |vs|2 θ2

Claim that inside the parenthesis one gets higher order

multi-index derivatives of K(s) in the direction of Jvs
for all even powers of ε.

Thus we are quite sure that we will get a function in TS

multiplying θ2. None of the forms θ1, θ3, θ4 will appear.
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Another approach: working in M = U(S)× (−r, r)

Efolded : (vs, α) 7→ (exp (−αvs, αvs), |vs| = 1

Vi, i = 1,2,3 Levi Civita frame in U(S), V4 = ∂/∂α.

θi, i = 1,2,3 are now restricted to U(S), θ4 = dα.

0 ≤ |α| ≤ r, 2r = the injectivity radius

F = 2α exp (B) , B(vs, α) = m2(vs)α
2 +O(α4)

E∗foldedΩpair = Ω13 θ1 ∧ θ3 + Ω14 θ1 ∧ θ4+

+ Ω23 θ2 ∧ θ3 + Ω24 θ2 ∧ θ4

Next: the coefficients Ωij(vs, α): Jacobi fields!!!
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For α = 0 the only nonzero is Ω24 = 2

folded symplectic
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Notations in M = U(S)× (−r, r)

0 ≤ |α| ≤ r, 2r = the injectivity radius

Efolded : (vs, α) 7→ (exp (−αvs), exp (αvs)), |vs| = 1.

Vi, i = 1, 2, 3 the Levi Civita frame on U(S)

V4 = ∂/∂α.

Let Y, Z the Jacobi fields with initial conditions

Y (0) = 0, Y ′(0) = −vs , Z(0) = vs, Z
′(0) = 0

(along the geodesic γ1 with initial condition Jvs
connecting s±.)
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Folded symplectic: M = U(S)× (−r, r)

Ω13 = −Ω31 = −(|Y (α)| + |Y (−α)| )
Ω14 = −Ω41 = −|Y (α)| + |Y (−α)|
Ω23 = −[Ω]32 = |Z(α)| − |Z(−α)|
Ω24 = −[Ω]42 = |Z(α)|+ |Z(−α)|

[Ω] =


0 0 Ω13 Ω14
0 0 Ω23 Ω24
−Ω13 −Ω23 0 0
−Ω14 −Ω24 0 0



Y (0) = 0, Y ′(0) = −vs , Z(0) = vs, Z
′(0) = 0 .
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Using the expansions of the norm of Jacobi fields

Ω13 = −2α+
1

3
K(s)α3 +O(α5)

Ω14 = O(α4)

Ω23 = −
1

3
(∇K · Jvs)α3 +O(α5)

Ω24 = 2− K(s)α2 +O(α4)
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E∗Ωpair = 2θ2 ∧ dα− 2α θ1 ∧ θ3 − α2K(s)θ2 ∧ dα+

+ α3/3 [K(s) θ1 ∧ θ3 − (∇K · Jvs)θ2 ∧ θ3] +O(α4)

E∗Ωpair = dω +O(α4)

ω = 2(−α+
1

6
K(s)α3) θ2
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Educated guess

E∗Ωpair = d(ω +O(α4))

ω = 2(−α+
1

6
K(s)α3) θ2

We posit that E∗Ωpair is exact, namely

E∗Ωpair = d[f(vs, α) θ2],

with a f(vs, α) in M that can be expressed in terms of

multiindices derivatives in Jvs.
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Summary: Vortex pair equations to leading orders

ṡ = vs +α2
[
(3m2(vs) +

1

2
K(s))vs− dm2(V1)Jvs

]
+O(α4)

Dṡ vs = −α2
[
dm2(V3) +

1

6
(∇K · Jvs) +O(α2)

]
Jvs

α̇ = −α3 dm2(V2) +O(α5)

D = Levi-Civita covariant derivative.
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E. Computation of m2: some simple examples

a) Half plane {(x, y)| y ≥ 0} with euclidian metric

G(z1, z2) =
1

2π
(log(|z1 − z2| − log(|z1 − z2|)

R(z) = −
1

2π
log(2y)

4π B(z1, z2) = log(4y1y2)− log((x1 − x2)2 + (y1 + y2)2) .

Substituting

x1,2 = xo ± a cos θ , y1,2 = yo ± a sin θ

we get

4πB = − log(1+a2 cos2 θ/y2
o )+log(1−a2 sin2 θ/y2

o ) = −
1

y2
o

a2+O(a4).

m2 = −
1

y2
o

(independent of direction).
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As the pair approaches the boundary in an inclined way it shall perform a
sharp turn, similar to a billiard. But when the pair approaches the boundary
in the perpendicular direction, they split in two opposite directions, while heir
geometric center comes to a halt asymptotically. One way to interpret this
phenomenon is as follows: in the full plane, the image pair comes along from
the negative side. The two pairs swap partners and change directions by 90
degrees.

The same behavior will occur for a vortex pair inside the unit disk D : |z| ≤ 1,
for which the Green function is

G(z1, z2) =
1

2π
(log |z1 − z2| − log(|z1 − z∗2||z2|) , z∗2 = z2/|z2|2 .

Similar computations give analogous results. In the case of the unit disk, sup-
pose that the pair approaches the boundary with symmetric positions relative
to a diameter. The geometric center stops and then reverses direction, while
the pair splits apart, running close to the boundary but in opposite ways. They
reunite on the other side: a perennial cycle of “love and hate”.

In conclusion: B blows up as one approaches the boundary, due to the mirror

vortex pair coming from the other side. B contains contributions from this,

as we saw explicitly in the case of the upper half plane. For surfaces one can

do this formally using the Schottky double (we thank Björn Gustafsson for this

observation).
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b) The round sphere: m2 = −1/6

G(x, y) = log |X − Y |
where one takes the euclidian distance between X,Y .

Their midpoint is well defined when they are not antipodal. Denote
0 < α < π/2 the angle between each of vectors X,Y with s.

dS2(x, y) = 2α , G(X,Y ) = log(2 sinα).

B(X,Y ) = log |X−Y |−log dS2(X,Y ) = log(2 sinα)−log(2α) = log(
sinα

α
),

since Robin’s function vanishes identically. We can expand

B(X,Y ) = log(1−
1

6
α2 + · · · ) = −

1

6
α2 + · · · , so

m2 ≡ −
1

6
.
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Validating the results using the round sphere

When we put K = 1, m2 = −1/6, e1 = e2 = e3 = 0, then

3m2 +K/2 ≡ 0.

Hence the central geodesic does not sense any perturbation.

Let us verify again with the full vortex equations.

H = − log(2 sinα)

without rescaling, or

F = exp(−H) = 2 sinα

after rescaling. The vorticities are κ = ±1.

Without loss of generality we may take the initial conditions

so = (1,0,0), vo = (0,1,0) so that Jvo = so × vo = (0,0,1).

s±(α) = exp(so,±αJvo) = (cosα,0,± sinα) , 0 ≤ α ≤ π/2.

The Jacobi fields are tangent to the parallels, with norm

|Y (±α)| = sinα , |Z(±α)| = cosα .

... continues
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The symplectic matrix is

[Ω] = 2

 0 0 sinα 0
0 0 0 cosα
− sinα 0 0 0
0 − cosα 0 0

 .
The differential of the rescaled Hamiltonian is

[dF ] = (0,0,0,2 cosα)

Solving for XF in Ω(XF , •) = −dF we get, as expected, the well
known fact: the centerpoint s runs the equator, and the vortices
s± the parallels with latitude ±α = const.

In this rescaling the period of all orbits is constant, Tresc = 2π. If

we go to the original time, the period is obtained multiplying 2π

by sinα. The motion is infinitely fast for dipoles, and the velocity

slows down to zero at the poles.
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c) Hyperbolic half plane (K = −1): m2 = −1/3

ds2
H = |dz|2/y2 in H : y > 0.

cosh dH(z1, z2) = 1 +
|z1 − z2|2

2y1y2
.

G(z1, z2) =
1

2π
log(tanh(

ρ

2
)) =

1

4π
log

cosh ρ− 1

cosh ρ+ 1
.

Initial conditions z− = −β + i , z+ = β + i.

The trajectories stay symmetric with respect to the y−axis, which is a geodesic.

The vortex z+(t) traces the line

x = β y , y > 0

with constant distances ρ = d(z−(t), z+(t)) given by cosh ρ = 1 + 2β2.

In first order, ρ ∼ sinh ρ ∼ 2β . The geodesic joining z±(t) is an arc of the
semicircle centered at the origin and radius

r(t) = |z+(t)| =
√
x2(t) + y2(t) =

√
1 + β2 y(t).

Thus the mid point of s−(t) and s+(t) is (0, r(t)), and

ṙ

r
=
ẏ

y
.

... continues
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ẏ is governed by the differential equation

ẏ

y2
= κ

∂F

∂x
.

where we take the rescaled Hamiltonian (dropping the 1/2π factor)

F = exp(−H) = exp(G) =

√
cosh ρ− 1

cosh ρ+ 1
= tanh(

ρ

2
).

A quick computation gives at the symmetric pair:

Fx =

√
cosh ρ+ 1

cosh ρ− 1

(cosh ρ)x
(cosh ρ+ 1)2

where (cosh ρ)x = 2x/y2. Thus

ẏ

y2
=

√
cosh ρ+ 1

cosh ρ− 1

2x/y2

(cosh ρ+ 1)2
, cosh ρ = 1 + 2β2 , x = βy.

Simplifying, we get

vr =
ṙ

r
=
ẏ

y
=

vo

(1 + β2)3/2
, vo = 1/2.

Adjusting the vorticity κ we can assume vo = 1.
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As expected, that the velocity vr of the midpoint (same as the vertical compo-
nent of the vortices) is constant, when measured in the hyperbolic metric.

But the velocity depends on the separation parameter β.

When β → ∞ then vr → 0, which is what one expects: they do not see each
other. For small β the Taylor expansion starts as

vr = vo (1−
3

2
β2 + · · · )

where vo is the velocity of the dipole (infinitesimal separation) in the time scale
of the Hamiltonian F = exp(G).

Claim: m2 = −1/3. This gives rise to the coefficient -3/2 above as predicted,
by adding

3m2 +K/2 = 3(−1/3)− 1/2.

We use the Poincaré disk model just to do a double check. The Green function
for the metric

ds2
D = 4

|dw|2

(1− |w|2)2
in D : |w| < 1

is given by

G(w1, z2) =
1

2π
log
|w1 − w2|
|w1w2 − 1|

=
1

2π
log(tanh(

ρ

2
)) =

1

4π
log

cosh ρ− 1

cosh ρ+ 1
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where the hyperbolic distance is

ρ = dD(w1, w2) = 2 tanh−1 |(w1 − w2)/(w1w2 − 1)| .

Robin function is constant. We expand

G =
1

4π
log

(
ρ2/2 + ρ4/4! + · · ·

2 + ρ2/2 + ρ4/4! + · · ·

)
=

=
1

2π
log ρ+

1

4π
log

(
1/2 + ρ2/4! + · · ·

2 + ρ2/2 + ρ4/4! + · · ·

)

B = G−
1

2π
log ρ =

1

4π
log

[
(1 +

ρ2

12
+ · · · )(1−

ρ2

4
+ · · · )

]
= −

1

2π

ρ2

12
+ · · ·

Replacing ρ = 2α, where α is the distance to the midpont, and neglecting the
1/2π we get indeed

m2 ≡ −1/3



d) Surfaces of Revolution

For surfaces of revolution one can construct a global coordinate system (x, y)
with metric of the form

ds2 = h2(x) (dx2 + dy2) , y ≡ y + 2π.

Both the geodesic system and the vortex pair are completely integrable, with
momentum maps of the S1 symmetry given by

py = 2h2(x)ẏ

for the geodesic problem and

J =

∫ x1

x2

h2(x) dx

for the vortex pair problem in S × S.

Project: comparative study in the catenoid. The natural parametrization is
already conformal,

X(x, φ) = (cosφ coshx, sinφ coshx, x) ,

Metric g : ds2 = cosh2(x)(dφ2 + dx2) .

with x running linearly along the surface-axis, and with h = cosh(x) equal to
the radius of circles forming the parallels. The geodesics were described using
elliptic functions.
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Topologically, the catenoid is a cylinder, with underlying Green function for the
constant curvature metric given by (). The vortex pair problem can be reduced
to quadratures (see appendix B), with

J =
1

4
[ (sinh(2x2) + 2x2)− (sinh(2x1) + 2x1)]

The reduction will involve the transcendental equation

x+
1

2
sinh(2x) = a, where a = 2J + x1 +

1

2
sinh(2x1)

so the development of the project needs to be a mix analytical/numerical.

A question we would be particularly interested: for nearby vortices, how the

center point motion drifts from the initial geodesic given by the initial condi-

tions?



e) Round cylinder and flat tori: topology matters

As discussed in extra slides (A). The Green function of the cylinder is given
just by elementary functions. The Green functions for flat tori require elliptic
functions. Since the feature we want to show is similar in both, we only did the
vortex pair problem on the cylinder.

There are two symmetry groups of translations. For the cylinder: coordinates
X = (x, y) ∈ R × S1, y ≡ y + 2π. The groups are the real line itself in the x
direction, and S1 itself for in the slot y. It is trivial to find the conserved (group
valued) momenta, although

Ωpair = dx2 ∧ dy2 − dx1 ∧ dy1

is exact only in the x coordinate.

In a flat torus, on identifies points in the plane that differ by integer multiples
of two generators. The groups of translations are generated by infinitesimal
motions in the direction of the generators. The momenta in both cases are the
coordinate differences, the 2π ambiguities are irrelevant.

Momentum conservation entails:

The pair moves keeping fixed the relative position vector.
This implies also α̇ ≡ 0.
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Abstract. We consider the problem of point vortices moving on the surface
of a triaxial ellipsoid. Following Hally’s approach, we obtain the equations

of motion by constructing a conformal map from the ellipsoid into the sphere

and composing with stereographic projection. We focus on the case of a pair of
opposite vortices. Our approach is validated by testing a prediction by Kimura

that a (infinitesimally close) vortex dipole follows the geodesic flow. Poincaré

sections suggest that the global flow is non-integrable.

1. Introduction. The equations describing the motion of N -point vortices on an
ideal planar fluid were introduced in 1867 by Helmholtz [15] and described as an
Hamiltonian system in 1876 by Kirchhoff [24]. Equations for point vortices on
the two dimensional sphere were derived independently by I. Gromeka [13] and
by E. Zermelo [37] and rediscovered in 1977 by Bogomolov [2]. In 1999 Kimura
[23] studied all complete surfaces with constant curvature. Kimura conjectured that
on any surface a pair of infinitesimally close opposite vortices would move along a
geodesic. For the hyperbolic plane a recent study was carried out by Montaldi [27].

In 1980 D. Hally [14] wrote the equations for the point vortex dynamics on
a simply connected compact surface (i.e, surfaces diffeomorphic to spheres) using
isothermal coordinates. For such a surface with metric ds2 = h2(z, z)|dz|2 where
z ∈ C∪∞ represents stereographic coordinates on the sphere, Hally’s equations are

żn = h−2(zn, zn)

 N∑
k 6=n

−i Γk
zn − zk

+ iΓn
∂

∂zn
ln
(
h(zn, zn)

) , n = 1, 2, ..., N ; (1)
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where Γk represents the k-th vortex intensity and zk its coordinates. The notation
(z, z) should be familiar to the reader, meaning Rez = (z+z)/2, Imz = (z−z)/(2i).
The topological constraint of the surface being compact imposes

N∑
i=1

Γi = 0 . (2)

Bounded domains inside curved surfaces, simply or multiply connected, can
be studied on its planar image via Theorem 2 of C.C.Lin’s classical paper [19].
Presently, there are powerful methods to produce conformal mappings to the unit
circle or the unit circle with circular holes [10].

Recent work. The case of a compact Riemann surface S of any genus endowed
with an arbitrary metric was addressed by Boatto and Koiller [1]. The constraint (2)
can be relaxed. In fact, for compact surfaces, the Green function G(s1, s2) of the
Laplace-Beltrami operator governing the vortex-vortex interactions, also encodes
a background counter-vorticity, uniformly distributed with respect to the metric.
The Robin function (desingularization of G) accounts for the self interactions. For
vortices in the round sphere there is a sizeable literature (for a fairly complete
list see [1]). We now review some work on vortices moving on surfaces with non-
constant curvature. In 2008 Castilho and Machado [7] wrote Hally’s equations as
an Hamiltonian system, with Hamiltonian function

H =
∑
k<n

ΓkΓn ln
(
h(zk, zk)h(zn, zn)|zk − zn|2

)
(3)

and symplectic form

Ω =
N∑
n=1

Γnh
2(zn, zn)dzn ∧ dzn. (4)

Using perturbation theory they obtained first order approximations for Hally’s

equations for an ellipsoid of revolution x2

R2 + y2

R2 + z2

R2(1+ε) = 1, for small values of ε.

The ellipsoid’s symmetry was used to reduce the dimension of the problem. In 2010
Kim [21] obtained the full equations for any ellipsoid of revolution. Several other
surfaces of revolution were considered in [8]. Kimura’s conjecture for vortex pairs
(Γ2 = −Γ1) was first tested in [25]. As for numerical methods: San Miguel [32], used
least-squares fitting to obtain discretized conformal mappings between ovaloids and
the sphere. He integrated the vortex pair equations using the Gaussian collocation
method. The first study on a genus 2 surface was done by C. Ragazzo [30]. Based
on a relation between the Laplace-Beltrami Green function and the heat kernel, an
algorithm is presented to determine the motion of a single vortex which is governed
by Robin’s function. The method is applied to compute the motion of a vortex on
the Bolza surface, namely a constant curvature genus 2 surface whose fundamental
domain is a regular octagon.

Summary of the paper. We study the motion of a vortex pair on the triaxial
ellipsoid

E2(a, b, c) :
x2

a
+
y2

b
+
z2

c
= 1 (5)

with 0 < a < b < c . In section 2 we review Jacobi’s confocal conics coordinates
λ1, λ2, with a ≤ λ1 ≤ b ≤ λ2 ≤ c that parametrize one octant of the ellipsoid.
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Jacobi also derived a system of conformal coordinates, but they become singular
at the four umbilical points that belong to the ellipse with semiaxis a, c (y = 0),
corresponding to λ1 = λ2 = b. In section 3 we recall the sphero-conical coordinates
µ1, µ2 for the unit sphere S2,

ξ2 + η2 + ζ2 = 1, (6)

that depends on three affine parameters I1 < I2 < I3, with I1 < µ1 < I2 < µ2 < I3.
In section 4 we construct a conformal map between the two surfaces, with the

help of a simple, but useful lemma 4.1. The sphero-conical parameters Ij are chosen
in such a way that one octant of the ellipsoid is mapped exactly into one octant of
the sphere under a common isothermal parametrization. There are two relations
between the affine triples a, b, c and I1, I2, I3, given in terms of complete elliptic
integrals. Moreover, each λi is an elliptic function of their corresponding µi, i = 1, 2.
Dupin’s lines of curvature of the ellipsoid is mapped into a topologically equivalent
system of curves in the sphere. The umbilics λ1 = λ2 = b map to µ1 = µ2 = I2.
The conformal factor is (λ2 − λ1)/(µ2 − µ1), which is 0/0 at the umbilical points.
We computed the limit in §5: it is equal to [(b− a)(c− b)]/[b(I2 − I1)(I3 − I2)].

In section 6 we write the vortex pair equations on the ellipsoid and present our
methodology to numerically integrate them. Composing the ellipsoid to sphere map
with the stereographic projection from the sphere into the z-complex plane we get
the conformal factor h(z, z̄) required for Hally’s equation.

In section 7 our approach is validated by verifying Kimura’s conjecture [23] about
the relation between the dipole dynamics and the geodesic flow. We also compute
exploratory Poincaré maps for the flow suggesting that it is chaotic. Directions for
future research are presented in section 8. In Appendix A (following [1]) two proofs
of Kimura’s conjecture are outlined. Appendix B outlines Carlson’s method for
numerically computing elliptic integrals [6].

2. Confocal quadrics coordinates (λ1, λ2) on the triaxial ellipsoid. Consider
the equation

x2

a− λ
+

y2

b− λ
+

z2

c− λ
= 1 . (7)

For P = (x, y, z) ∈ E2 the above equation has three solutions λ3 = 0 and λ1 , λ2

(called Jacobi’s confocal coordinates [18], [28]) such that a ≤ λ1 ≤ b ≤ λ2 ≤ c .
They satisfy

x2 =
a(a− λ1)(a− λ2)

(a− b)(a− c)
,

y2 =
b(b− λ1)(b− λ2)

(b− a)(b− c)
,

z2 =
c(c− λ1)(c− λ2)

(c− a)(c− b)
.

(8)

Each (closed) octant of E2 is parametrized by (λ1, λ2) ∈ [a, b] × [b, c]. See Fig. 2.
Clearly, the semiaxis extremes correspond to:

λ1 = b, λ2 = c ⇒
(√
a, 0, 0

)
λ1 = a, λ2 = c ⇒

(
0,
√
b, 0
)

(9)

λ1 = a, λ2 = b ⇒
(
0, 0,

√
c
)
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There are four umbilical points located in the middle ellipse (y = 0):(
±
√
a(b− a)

c− a
, 0, ±

√
c(c− b)
c− a

)
(10)

corresponding to λ1 = λ2 = b. The following result is classical:

Proposition 1. (Jacobi, [18]) The metric ds2 induced by the embedding of the
ellipsoid in R3 is of Liouville type ([4])

ds2 =
λ2 − λ1

4

[
λ1 dλ

2
1

(λ1 − a)(λ1 − b)(λ1 − c)
− λ2 dλ

2
2

(λ2 − a)(λ2 − b)(λ2 − c)

]
(11)

(note that the second term is positive).

In a famous paper Jacobi showed that the geodesics on the triaxial ellipsoid
are integrable ([17],1839). In §28 of his Vorlesungen ([18], 1866), he presented
a derivation using the (now called) Hamilton-Jacobi PDE, that separates using
confocal quadrics coordinates1. In §28 Jacobi also constructed a local conformal
map from the triaxial ellipsoid to the plane (pp. 215-217 of second edition). Jacobi’s
map was implemented recently in [29] and [20]. Isothermal coordinates (u, v) on an
octant of E2 can be constructed using elliptic integrals of the third kind Π (see [5])

Π(φ, k, n) =

∫ φ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
. (12)

We define the functions u = P (λ1) (increasing) and v = Q(λ2) (decreasing) by

u = P (λ1) =

∫ λ1

a

√
t

(t− a)(t− b)(t− c)
dt =

2a√
b(c− a)

Π(φ, k, n) (13)

with

φ = arcsin

√
b(λ1 − a)

λ1(b− a)
, k =

√
c(b− a)

b(c− a)
and n =

a− b
b

; (14)

v = Q(λ2) =

∫ c

λ2

√
−t

(t− a)(t− b)(t− c)
dt =

2c√
b(c− a)

Π(φ, k, n) (15)

with

φ = arcsin

√
b(c− λ2)

λ2(c− b)
, k =

√
a(c− b)
b(c− a)

and n =
c− b
b

. (16)

Proposition 2. The metric (11) in the ellipsoid (5) induced by its embedding in
the euclidian space has, in the first octant, the isothermal coordinates (u, v) in the
rectangle [0,K1]× [0,K2]. Here u = P (λ1), v = Q(λ2) are given by (13) and (15),
with K1 = P (b) and K2 = Q(b). Moreover,

ds2 = h2(u, v)(du2 + dv2), with h2(u, v) =
λ2(v)− λ1(u)

4
. (17)

The conformal map becomes singular (because the conformal factor vanishes) when
λ2(v) = λ1(u) which occurs only for u = K1, v = K2, precisely the umbilical point.
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Figure 1. Lines of curvature of the triaxial ellipsoid. Cuts along
the top and bottom segments joining the umbilical points results
(topologically) on an open cylinder. One could as well make the
cuts sidewise.

The lines of curvature (of both families) in Fig.1 cannot be given a consistent
direction along the middle ellipse2. In Fig.2, the top panel shows the transformation
from confocal coordinates (λ1, λ2) to Jacobi’s (u, v) on every octant. The following
Proposition explains the middle and bottom panels. An underlined letter means
that in the planar map the region appears flipped by 180◦ but overlap perfectly
in the ellipsoid. This observation certainly has not escaped to Jacobi, to whom it
must have appeared so trivial that he did not even bothered to put in print.

Proposition 3. The real elliptic functions

λ1 = λ1(u) and λ2 = λ2(v), (18)

obtained by inverting respectivelly (13) and (15), give rise to a double (branched)
covering of the ellipsoid by a flat torus. The lattice has fundamental domains of
sizes 4K1 and 4K2. Each of the 16 rectangles of sizes K1 ×K2 in the plane (u, v)
corresponds to an octant: the ellipsoid is covered twice.

For the numerical work will not need to use their explicit formulas. Instead, we
will be only computing elliptic integrals. Four rectangles in the plane surrounding
a point marked U cover twice the sector formed by two octants with a common
umbilical point. Rectangles with vertices corresponding to the umbilical points
±U1, ±U2 with centers B (or −B) are mapped to sides y > 0 or y < 0 of the
ellipsoid (5). In the next sections we will remedy the defect at the umbilical points.

Remark 1. In contradistinction with geodesics,which depends on the local metric,
vortex motion depends on non local effects, which are encoded in the Green function
of the Laplace-Beltrami operator of the metric [1]. An early attempt to use Jacobi’s
coordinates (u, v) in our numerical experiments for the vortex pair problem on the
triaxial ellipsoid was not satisfactory. However, for initial conditions where the
distance between the vortices was small, we found in §6 that the dynamics tends
to move along a geodesic of the ellipsoid, as predicted by Kimura’s conjecture.
Therefore, in order to study point vortices on the full triaxial ellipsoid a global map
from the ellipsoid to the sphere is needed.

1The triaxial ellipsoid geodesics problem also separates in sphero-conical coordinates in §3
applied to ξ = x/

√
a, η = y/

√
b, ζ = z/

√
c, but we preferred to use Jacobi’s confocal coordinates).

2Source https://en.wikipedia.org/wiki/Umbilical_point

https://en.wikipedia.org/wiki/Umbilical_point
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Figure 2. Scheme for the double branched covering of the torus
over the ellipsoid. See Proposition 3.
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Our construction of a conformal map from the ellipsoid to the sphere makes use
of confocal coordinates in E and sphero-conical coordinates in S2, that has four
“fake” singular points. The distribution of coordinate lines on the two surfaces
correspond: in the ellipsoid they are the principal curvature lines, that have the
umbilical points as singularities. The umbilics on the ellipsoid are mapped into the
singular points of the sphero-conical coordinates. Hence the map will be global.

3. Sphero-conical coordinates (µ1, µ2) on the sphere S2 [3]. This coordinate
system depends on three arbitrary parameters I1 < I2 < I3, that will be chosen
so that one octant of the ellipsoid (5) gets mapped exactly into one octant of the
sphere (6). This will permit to extend the conformal transformation between the
whole surfaces, in such as way that the coordinate lines distributions correspond.

The parametrization of (γ1, γ2, γ3) ∈ S2 is

γ2
1 =

(I1 − µ1)(I1 − µ2)

(I1 − I2)(I1 − I3)
,

γ2
2 =

(I2 − µ1)(I2 − µ2)

(I2 − I1)(I2 − I3)
,

γ2
3 =

(I3 − µ1)(I3 − µ2)

(I3 − I1)(I3 − I2)

(19)

with (µ1, µ2) ∈ [I1, I2] × [I2, I3]. Taking µ1 = µ2 = I2 one gets four distinguished
points in the sphere (

±
√
I2 − I1
I3 − I1

, 0, ±
√
I3 − I2
I3 − I1

)
(20)

that will be paired with the ellipsoid umbilics (10) in the conformal transformation
between the surfaces.

A quick derivation of this coordinate system on an octant of the sphere comes
indirecly from the following problem (see [26]). Let A = diag(I1, I2, I3). Diagonalize
〈Ax, x〉, x ∈ R3 , restricted to the subset 〈x, γ〉 = 0; that is, find extremals of
〈Ax, x〉 constrained to ‖x‖2 = 1 and to 〈x, γ〉 = 0. The extremals can be located by
considering the function f(x) = 1

2 〈Ax, x〉, constrained to the subset of S2 defined

by ϕ−1(0, 0) where

ϕ(x) = (
∑

x2
j − 1,

∑
xjγj).

Let µ and k be Lagrange multipliers. We look for solutions of

∇f(x) =
µ

2
∇ϕ1(x) + k∇ϕ2(x).

That is
xj = k

γj
(Ij − µ)

, j = 1, 2, 3. (21)

Considering that
∑
x2
j = 1 and

∑
xjγj = 0, we obtain k2 = 1/

[∑ γ2
j

(Ij−µ)2

]
and

3∑
j=1

γ2
j

Ij − µ
= 0. (22)

For each choice of value µ, equation (22) represents an elliptical cone in the
Euclidian space of the (γ1, γ2, γ3). The intersection of these cones with the sphere
〈γ, γ〉 = 1, are curves that represent an orthogonal system of coordinates, since the
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extremal vectors (21), are extremals of the quadratic form 〈Ax, x〉, and are also
parallel to the gradient of (22). Equation (22) has two roots

I1 < µ1(γ, I1, I2, I3) < I2 , I2 < µ2(γ, I1, I2, I3) < I3

that are explicitly obtained from a quadratic equation. Conversely, equations (19)
for (γ1, γ2, γ3) can be obtained by solving the linear system

A(γ2
1 γ2

2 γ2
3)t = (1 0 0)t

with

A =

 1 1 1
(I1 − µ1)−1 (I2 − µ1)−1 (I3 − µ1)−1

(I1 − µ2)−1 (I2 − µ2)−1 (I2 − µ2)−1

 .

For future reference we observe that

∂γ

∂µi
=

1

2

(
γ1

µi − I1
,

γ2

µi − I2
,

γ3

µi − I3

)
. (23)

Proposition 4. The standard metric ds2 of S2 can be written in terms of the
sphero-conical coordinates (19) with parameters (I1, I2, I3) as

ds2 =
µ2 − µ1

4

[
dµ2

1∏3
i=1 (µ1 − Ii)

− dµ2
2∏3

i=1 (µ2 − Ii)

]
. (24)

For a derivation, see [3]. The coordinates I1 < µ1 < I2 < µ2 < I3 cover each
octant of the sphere in a similar fashion as the confocal quadric coordinates do for
the triaxial ellipsoid.

4. Constructing the conformal map from E2(a, b, c) to the unit sphere.
Two conformal maps from a closed simply connected surface to the sphere differ by
Moebius transformations in S2. For the triaxial ellipsoid we found two references:
Schering [34] in 1857 and Craig [9] in 1880. Both are quite intricate analytically,
so we opted do to an ab initio construction, that may have its own interest due to
its simplicity. Our map is equivalent to theirs. As this paper was being revised,
we found a post in a cartography forum with a similar idea, combining Jacobi’s
projection of the y > 0 side of the ellipsoid, with a projection due to Goyou of half
the sphere on a common rectangle in the plane3. Such a map will also makes explicit
the (unique) complex structure in E2(a, b, c), via the global isothermic coordinates
z, z̄ obtained by stereographic projection of the sphere over the complex plane.

3Karney, in http://lists.maptools.org/pipermail/proj/2015-January/006959.html.

http://lists.maptools.org/pipermail/proj/2015-January/006959.html
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4.1. A simple lemma. The following is immediate:

Lemma 4.1. Let (µ1, µ2) ∈ T = [a1, b1]×[a2, b2] and (λ1, λ2) ∈ T̃ = [ã1, b̃1]×[ã2, b̃2]

local coordinates on surfaces S and S̃, respectively. Assume that the respective
metrics can be written as

ds2(µ1, µ2) = f(µ1, µ2)
[
g2

1(µ1)dµ2
1 + g2

2(µ2)dµ2
2

]
, (25)

ds̃2(λ1, λ2) = f̃(λ1, λ2)
[
g̃2

1(λ1)dλ2
1 + g̃2

2(λ2)dλ2
2

]
(26)

and that∫ b1

a1

g1(µ1)dµ1 =

∫ b̃1

ã1

g̃1(λ1)dλ1(= r1),

∫ b2

a2

g2(µ2)dµ2 =

∫ b̃2

ã2

g̃2(λ2)dλ2(= r2).

(27)
Then the correspondence

(µ1, µ2) 7→ (λ1(µ1), λ2(µ2)),

defined implicitly through∫ µ1

a1

g1(t)dt =

∫ λ1

ã1

g̃1(t)dt (= ξ1),

∫ µ2

a2

g2(t)dt =

∫ λ2

ã2

g̃2(t)dt (= ξ2). (28)

defines a conformal map between the surfaces

ds̃2(µ1, µ2) = h2(µ1, µ2) ds2(µ1, µ2) (29)

with conformal factor h given by

h2 =
f̃(λ1(µ1), λ2(µ2))

f(µ1, µ2)
. (30)

In other words, we use the coordinate patch (ξ1, ξ2) ∈ R = [0, r1] × [0, r2] as
common isothermal parameters for the two surfaces,

ds2 = f
[
dξ2

1 + dξ2
2

]
, ds̃2 = f̃

[
dξ2

1 + dξ2
2

]
(31)

We apply this Lemma using S = S2 with the sphero-conical coordinates (µ1, µ2)

and S̃ = E2 with Jacobi confocal coordinates (λ1, λ2) with the corresponding metrics
given by (24) and (11). It is VERY important that given a < b < c we chose
I1 < I2 < I3 such that condition (27) holds. On both coordinate systems and in
each octant the coordinate curves meet the great circles perpendicularly, except at
the point corresponding to the umbilic points at the ellipsoid.

Theorem 4.2. The conformal factor between the metric on the ellipsoid to the
metric on the sphere is

h2 =
λ2(µ2)− λ1(µ1)

µ2 − µ1
. (32)

The functions λ2(µ2), λ1(µ1) defining the conformal map are derived from the
the metric expressions (11) and (24).

Identifying the corresponding points of the two surfaces on the double coverings
by the lattice in the complex plane w = u+ iv, a global map from E2 to S2 results.
w,w are common isothermal coordinates. The umbilical points in the ellipsoid (and
the special points in the sphere) are ramification points of order 1/2.
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4.2. Technical details. Computing each function λi(µi), i = 1, 2 requires one
elliptic integral and one elliptic integrals inversion. Computing the parameters
I1, I2, I3 of the sphero-conical coordinates involves a nonlinear system involving
two complete elliptic integrals of the first kind. Recall that the standard metric on
S2 written in the sphero-conical coordinates is given by (24),

ds2 =
µ2 − µ1

4

(
G1(µ1) dµ2

1 +G2(µ2) dµ2
2

)
where

G1(µ1) =
1

(µ1 − I1)(µ1 − I2)(µ1 − I3)
, G2(µ2) =

−1

(µ2 − I1)(µ2 − I2)(µ2 − I3)
.

(33)
Define the functions

S(µ1) =

∫ µ1

I1

√
1

(t− I1)(t− I2)(t− I3)
dt =

2√
I3 − I1

F(φ, k1) (34)

with

φ = arcsin

√
µ1 − I1
I2 − I1

, k1 =

√
I2 − I1
I3 − I1

; (35)

T (µ2) =

∫ I3

µ2

√
−1

(t− I1)(t− I2)(t− I3)
dt =

2√
I3 − I1

F(φ, k2), (36)

with

φ = arcsin

√
I3 − µ2

I3 − I2
, k2 =

√
I3 − I2
I3 − I1

(37)

Here F is the elliptic integral of the first kind [5]

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

. (38)

Let P and Q as (13) and (15) respectively. The relations (28) become

P (λ1) = S(µ1), Q(λ2) = T (µ2) . (39)

We must impose the condition (27) in Lemma 4.1 that assures that one octant
of the sphere is mapped exactly over an octant of the ellipsoid. This amounts to

P (b) = S(I2), Q(b) = T (I2) (40)

Given a, b and c, finding I1, I2 and I3 satisfying (40). Note that both
triples (a, b, c) and (I1, I2, I3) can be considered as projective quantities. Let

K(k) = F(
π

2
, k) (41)

be the complete integral of the first type. From (34) and (36) it follows that

K(k1) =

√
I3 − I1

2
P (b) , K(k2) =

√
I3 − I1

2
Q(b) (42)
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Observing that k1 and k2 are complementary, we get

K(k1)

K(k2)
=
P (b)

Q(b)
, k2

1 + k2
2 = 1 . (43)

After solving this system for k1, k2, the parameters I1, I2 and I3 are obtained from

I3 − I1 =

(
2K(k1)

P (b)

)2

, I2 − I1 = (I3 − I1) k2
1. (44)

5. Conformality at the umbilical points. The conformal factor is given by (32),
with the coordinates implicitly related by (39). Umbilics correspond to λ1 = λ2 = b,
and at the sphere we have µ1 = µ2 = I2 in view of (40). Therefore we get a 0/0
indeterminacy. Let α, β > 0, with α+ β = 1, and take

µ1 = I2 − αε+O(ε2), µ2 = I2 + βε+O(ε2), ε > 0.

Let’s examine the limit

lim
ε→0+

(
Q−1T (I2 + βε)− P−1S(I2 − αε)

)
/ε (45)

Using l’Hôpital, we should investigate the two limits in the combination

α [ lim
µ1→I2

d

dµ1
P−1S(µ1)] + β [ lim

µ2→I2

d

dµ2
Q−1T (µ2)] (46)

We will now show that both are equal to [(b − a)(c − b)]/[b(I2 − I1)(I3 − I2)]. We
do it for the first:

L = lim
µ1→I2

d/dµ1[P−1S(µ1)] (47)

d

dµ1
P−1S(µ1) =

dP−1

du |u=S(µ1)
· dS
dµ1

=
1
dP
dλ1

· dS
dµ1

where dP/dλ1 is computed at λ1 = P−1S(µ1). Therefore

d

dµ1
P−1S(µ1) =

[
1/ ((I2 − µ1)(I2 − µ1)(I3 − µ1))

P−1S(µ1)/ ((P−1S(µ1)− a)(b− P−1S(µ1))(c− P−1S(µ1))

]1/2

Let’s now try to compute this limit as µ1 → I2. Recall that P−1S(I2) = b. Pulling
out (if we may) the factors that have a direct limit we get

L =

[
(b− a)(c− b)

b(I2 − I1)(I3 − I2)

]1/2

lim
µ1→I2

(
1/
√
I2 − µ1

)
/
(

1/
√
b− P−1S(µ1)

)
(48)

The limit in the right is, by a stroke of luck,
√
L. The second limit is computed

analogously and gives, seemingly by another stroke of luck, the same result, but his
is indeed what we expect to happen by Riemann surfaces theory.

In passing, we have also shown that for µ1 < I2 < µ2, both close to I2, we have

λ1 = b− γ(I2 − µ1) +O((I2 − µ1)2), λ2 = b+ γ(µ2 − I2) +O((µ2 − I2)2) (49)

with

γ = h2
umbilic =

(b− a)(c− b)
[b(I2 − I1)(I3 − I2)

(50)

where a, b, c and I1, I2, I3 are related by (44).
We defined a global map from E2 to S2 by identifying the corresponding points

on the two surfaces (ellipsoid and the sphere) on their double coverings by the same
lattice in the complex w-plane (w = u+ iv). Summarizing:
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Proposition 5. Global isothermal coordinates (z, z) on E2 (except for the point
corresponding to z =∞) are obtained by stereographic projection from the γ-sphere
to the complex z-plane, namely:

w = u+ iv → (p ∈ E2)↔ (γ ∈ S2)→ z ∈ C .

Moreover, z = z(w) is a (complex) elliptic function with quarter periods K1, iK2.

6. The vortex pair on the triaxial ellipsoid E2. The case of a vortex pair is
given when N = 2 and Γ1 = −Γ2 = Γ in Hally’s equations (1). The symplectic
form and Hamiltonian function are respectively

Ω = Γ
[
h2(z1, z1)dz1 ∧ dz1 − h2(z2, z2)dz2 ∧ dz2

]
, (51)

H = −Γ2 ln
(
h(z1, z1)h(z2, z2)|z1 − z2|2

)
. (52)

Hamilton’s equations are

ż1 = iΓh−2(z1, z1)

[
1

z1 − z2
+

∂

∂z1
ln
(
h(z1, z1)

)]
,

ż2 = iΓh−2(z2, z2)

[
1

z1 − z2
− ∂

∂z2
ln
(
h(z2, z2)

)]
.

(53)

Let us now discuss how to do the actual computations. Let (z, z) denote the
stereographic coordinates through the south pole S on S2 \ {S}.

S2 \ {S} → C , (54)

(ξ, η, ζ) 7→ z =
ξ + iη

1 + ζ
. (55)

The standard (round) S2 metric is conformal to the Euclidean

ds2 =
4

(1 + zz)2
|dz|2. (56)

The inverse transformation is

ξ =
z + z

1 + zz
, η =

−i(z − z)
1 + zz

, ζ =
1− zz
1 + zz

. (57)

Recall that the sphero-conical coordinates (µ1, µ2) on S2, are obtained from (22)
and (57) via

ξ2

I1 − µ
+

η2

I2 − µ
+

ζ2

I3 − µ
= 0.

In other words µ1 and µ2 are the roots of

µ2 − αµ+ β = 0, (58)

where

α(z, z) = (I2 + I3)ξ2(z, z) + (I1 + I3)η2(z, z) + (I1 + I2)ζ2(z, z) ,

β(z, z) = I2I3ξ
2(z, z)− I1I3η2(z, z) + I1I2ζ

2(z, z) .

The ellipsoid metric in stereographic coordinates is given by

ds̃2 = h2|dz|2, h2(z, z) =
4(λ2 − λ1)

(µ2 − µ1)(1 + zz)2
. (59)
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To simplify notation we define

L(z, z) ≡ λ2(z, z)− λ1(z, z), M(z, z) ≡ µ2(z, z)− µ1(z, z) and r(z, z) ≡ 1 + zz.
(60)

We also write λi(z, z) = λi(µi(z, z)), i = 1, 2. Therefore, we get

Proposition 6. The conformal factor of the ellipsoid over the z-complex plane is
given by

h2(z, z) =
4L

Mr2
, (61)

∂

∂z
ln
(
h(z, z)

)
=

1

2

∂

∂z
ln

(
4L

Mr2

)
=
MrLz − LrMz − 2MLz

2LMr
. (62)

These determine equations (53). Lz and Mz, are given by

∂λi
∂z

=

√
(λi − a)(λi − b)(λi − c)

λi(µi − I1)(µi − I2)(µi − I3)

∂µi
∂z

,

∂µi
∂z

=
αzµi − βz
2µi − α

, i = 1, 2;

that are obtained through implicit diferentiation of (39).

The numerical integration of the dipole problem on E2 (53) is done as follows:

1) Use (58) to obtain the sphero-conical coordinates (µ1(zi, zi), µ2(zi, zi)), i = 1, 2.

2) Compute the confocal coordinates (λ1(z1, z1), λ2(z1, z1)) and (λ1(z2, z2), λ2(z2, z2))
using (28) (inverting P and Q defined in (13) and (15), respectively);

3) Using (61) and (62) compute the conformal factors (59) h2(z1, z1), h2(z2, z2) and
its partial derivatives

∂

∂z1
ln
(
h(z1, z1)

)
and

∂

∂z2
ln
(
h(z2, z2)

)
,

4) The Hamiltonian ODEs are numerically integrated using a Runge-Kutta 4(5)
with adaptative time-step.

7. Numerical experiments. We check Kimura’s conjecture by integrating Hally’s
equations [14] in isothermal coordinates (u, v) given by (17).

żn =
N∑
k 6=n

−i 4Γk(
λ2(vn)− λ1(un)

)
(zn − zk)

+ Γn
λ′2(vn)− iλ′1(un)(
λ2(vn)− λ1(un)

)2 . (63)

In fact,

∂

∂z
ln
(
h(z, z)

)
=

1

2

∂

∂z
ln
(
h2(z, z)

)
=

1

2h2

∂

∂z

(
h2(z, z)

)
=

2

λ2(v)− λ1(u)
· 1

2

(
−λ′1(u)− iλ′2(v)

4

)

= −1

4
· λ
′
1(u) + iλ′2(v)

λ2(v)− λ1(u)
.
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On the other hand, the geodesic equations in local coordinates (u, v) are given
by

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0

(64)

The first fundamental form coefficients are

E = G = h2 =
λ2(v)− λ1(u)

4
F ≡ 0

and we obtain the Christoffel symbols

Γ1
11 = Γ2

12 = −Γ1
22 = − 2λ′

1(u)
λ2(v)−λ1(u) ≡ c1 ,

Γ2
11 = −Γ1

12 = −Γ2
22 = − 2λ′

2(v)
λ2(v)−λ1(u) ≡ c2 .

(65)

Hence, the geodesic equations are

u̇ = p , v̇ = q , ṗ = c1 (q2 − p2) + 2 c2 p q , q̇ = c2 (q2 − p2)− 2 c1 p q . (66)

The numerical integration was performed as follows. Let v(0) and q(0) be initial
conditions for some geodesic. If γ(t) is its projection over the ellipsoid, integrating
numerically determine p1 = γ(ε/2) and p2 = γ(−ε/2). q1 and q2 are the initial
conditions for the vortex dipole. The geodesics initial conditions are q(0) and ṽ(0)
where ṽ(0) is a π/2 positive rotation of v(0) suitably normalized. In the figures the
dashed lines represent the geodesics and solid lines represent the vortices. In the
top figures u is the horizontal axis and v is the vertical axis.

Exploratory Poincaré Sections for H = H(u1, v1, u2, v2) were computed at v1 = 0
using Henon’s method [16]. We depicted the stroboscopic positions of one of the
vortices.

8. Final comments. In this paper we make a first study about point vortices
moving on the surface of a triaxial ellipsoid. We focused on the case of a pair of
opposite vortices. Our methodology was validated by testing Kimura’s conjecture
on close by pairs. The numerical experiments we presented on global behavior are
exploratory, and we plan to make a more thorough study in a sequel paper.

1. Domains (simply or multiply connected) in the ellipsoid are mapped in topo-
logically equivalent domains in the plane. Theorem 2 of [19] as geometrized
in [1] allow to study confined vortex motion in the planar image.

2. Equilibria and their stability. It is geometrically evident that vortex pairs
placed at the ends of the principal axis should remain in equilibrium. Which
of the three configurations are stable?

3. One of the referees suggested superposing Poincaré sections of the ellipsoid
geodesics system with the sections of the vortex pair. Can the vortex pair
system be regarded as a KAM perturbation of the integrable geodesic system
on the triaxial ellipsoid when the vortices are sufficiently close? For a surface
S, a numerical construction for the symplectomorphism S × S − diagonal ≡
T ∗S − zero section is needed (see [1]) but this is not a trivial task.

4. What would be the behavior of a vortex pair placed initially around a point
from a geodesic passing through an umbilical point? It is known that the
geodesic path will pass successively through the opposite umbilical point, ap-
proaching the middle ellipse as t→ ±∞. For the geodesic problem the middle
ellipse is a periodic orbit with coinciding stable and unstable manifolds. Can



VORTEX PAIRS ON A TRIAXIAL ELLIPSOID 15

−30 −20 −10 0 10 20 30
−60

−40

−20

0

20

40

60

5 10 15 20

15

20

25

30

35

40

10 15 20 25

−60

−55

−50

−45

−40

−35

−30

−25

Figure 3. Nearly spherical example a = 1, b = 1.01, c = 1.02

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

0 0.5 1 1.5 2 2.5

3.5

4

4.5

5

5.5

6

6.5

7

−2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4. Ellipsoid a = 1, b = 6, c = 9.



16 ADRIANO REGIS RODRIGUES, CÉSAR CASTILHO AND JAIR KOILLER

Figure 5. Poincaré map. Prolate, nearly symmetrical a = 1, b =
1.1, c = 9, H = −40

Figure 6. Poincaré map. Prolate a = 1, b = 2, c = 9, H = −36.

transversality be shown for the vortex pair system regarded as a perturbation
of the geodesic system? How about vortex pairs placed at opposite umbilical
points? We conjecture that they will traverse a periodic orbit passing through
the other pair.

5. We plan to pursue a more thorough investigation of Poincaré sections in the
future. One of the referees suggests to make parameters move away from
circular symmetry (two equal axis). Chaotic regions should became more and
more visible (e.g. take a=1, c=9, b=1, 1.1, 1.2,1.3, ...).
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Figure 7. Poincaré map. Prolate a = 1, b = 4, c = 9, H = −60.

6. The one point vortex problem on a compact surface S of genus zero or 1 (with
uniform countervorticity) has the Robin function R as Hamiltonian [1],

R(so) = lim
s→so

G(s, so)−
1

2π
ln d(s, so) (67)

where G is the Green function and d is the distance function of the metric.
The symplectic 2-form is the area (normalized by vorticity). A remarkable
result is (see [35])

∆R =
1

2π
K (68)

where K is the Gaussian curvature function of the surface and ∆ the Laplace-
Beltrami operator of the metric. It should be possible to solve this Poisson
equation using the confocal coordinates.

7. Three point vortices on the sphere are integrable due to the SO(3) symmetry
and were studied in [22] and [33]. How is the motion of three vortices affected
on a nearly spherical oblate or prolate ellipsoid with two equal axis?

8. We used a Runge-Kutta method in the simulations. A symplectic integrator
would be more adequate for very long times. Indeed, one could attempt to
apply a symplectic integrator directly on the vortex system in the triaxial
ellipsoid. A new numerical method for point vortices in the sphere was pro-
posed in [36]. Can this method be extended to spheroids? Other numerical
methods for point vortices on surfaces are in order using discrete differential
geometry, implementing numerical conformal maps and Green functions of a
discretized Laplacian [12].
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Appendix A. Kimura’s conjecture. In [1] two proofs were outlined. One of
them is based in the following way to rewrite of the vortex pair Hamiltonian:

H = − ln d(s1, s2)

2π
+B(s1, s2) (69)

where

B(s1, s2) =

[
R(s1) +R(s2)

2
−
(
G(s1, s2)− ln d(s1, s2)

2π

)]
(70)

Here R is the Robin function and its companion B was called the Batman function.
If initially d(s1(0), s2(0)) = O(ε) then B = O(ε2). Suppose the vorticities ±Γ are
weak, of order O(ε). Then to first order the contribution of B can be neglected,
and we get the truncated system

ṡ1 = εSGrads1 ln d(s1, s2), ṡ2 = εSGrads2 ln d(s1, s2)

with initially 1/d(s1(0), s2(0)) = O(ε−1). Here SGrad is the symplectic gradient,
which is the gradient rotated by pi/2 in the tangent plane. Now the proof ends by
writing the EDOs in terms of Gauss coordinates around a central geodesic.

The other proof would have a potential for further developments. It relies on
pulling back the symplectic form Ω of S×S (the phase space of the vortex pair sys-
tem) to T ∗S, the phase space of the geodesic system. Ω is the difference of the area
forms (take the vorticity=1). A map ps ∈ T ∗S → (s−, s+) ∈ S × S is constructed
using the exponential map of the metric: using the inverse Legendre transform,
write ps = 〈vs, ·〉, take the rotation us = J(vs), and define s± = exp(±εus). This
map depends on a parameter ε that gives the order of proximity of the pair. It is
easy to show that the leading term of the expansion of the pullback is precisely the
canonical symplectic form of T ∗S, while the Hamiltonian has as leading term the
norm of the cometric, |ps|, up to a scaling. This proves Kimura’s conjecture, at
least formally. The task is to compute the next order terms in ε of the symplectic
form and of the Hamiltonian.

Appendix B. Evaluation of elliptic integrals, following [6]. In the numerical
implementations, we computed the elliptical integrals (13), (15), (34) and (36) using

RF (x, y, z) =
1

2

∫ ∞
0

dt√
(t+ x)(t+ y)(t+ z)

(71)

RJ(x, y, z, p) =
3

2

∫ ∞
0

dt

(t+ p)
√

(t+ x)(t+ y)(t+ z)
, (72)

When p is equal to any of the coordinates x, y and z RJ degenerates into

RD(x, y, z) := RJ(x, y, z, z). (73)

The Legendre elliptical integrals [11] can be expressed in terms of RF , RJ and RD:

F (φ, k) = sin(φ)RF (cos2(φ), 1− k2 sin2(φ), 1) ,

E(φ, k) = sin(φ)RF (cos2(φ), 1− k2 sin2(φ), 1)−
1
3k

2 sin3(φ)RD(cos2(φ), 1− k2 sin2(φ), 1) ,

Π(φ, k, n) = sin(φ)RF (cos2(φ), 1− k2 sin2(φ), 1)−
n
3 k

2 sin3(φ)RJ(cos2(φ), 1− k2 sin2(φ), 1, 1 + n sin2(φ)) .

Algorithms for its fast evaluation can be found in [6].
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Abstract—We consider a pair of opposite vortices moving on the surface of the triaxial
ellipsoid E(a, b, c) : x2/a+ y2/b+ z2/c = 1, a < b < c. The equations of motion are transported
to S2 × S2 via a conformal map that combines confocal quadric coordinates for the ellipsoid and
sphero-conical coordinates in the sphere. The antipodal pairs form an invariant submanifold
for the dynamics. We characterize the linear stability of the equilibrium pairs at the three axis
endpoints.
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INTRODUCTION

In 1999 Yoshifumi Kimura conjectured that a pair of opposite vortices moving on a two-
dimensional surface Σ, endowed with a Riemannian metric g, when placed close together, would
stay close, bordering the geodesic path in between them [18].

In [26] we presented a numerical study to verify Kimura’s conjecture, taking the triaxial ellipsoid
Σ = E(a, b, c) : x2/a+ y2/b+ z2/c = 1, a < b < c as the test surface. One observes indeed that near
the diagonal D = {(σ, σ) ∈ Σ× Σ} the vortex system looks like a KAM perturbation of Jacobi’s
geodesic problem on the ellipsoid.

In this paper we focus on the other extreme situation, vortices placed near an antipodal
configuration. For surfaces with antipodal symmetry, such as the triaxial ellipsoid, if a pair of
opposite vortices is placed exactly in an antipodal configuration, the motion will remain antipodal
for all time. In other words, antipodal pairs form an invariant submanifold for the dynamics. In
fact, we show that the center manifold dynamics is governed by the conformal factor of a conformal
map Σ → S2 that preserves “antipodicity”. This map is unique up to Moebius transformations of
the sphere.

We present here a study on the stability of the pair configurations at the three axis endpoints.
We reach the (not very surprising) conclusion that the minimum and maximum axis endpoints are
of center-center type, while the middle axis is a saddle-center.

This paper is organized as follows. We review in Section 1 some results from [5]. Our new results
are presented in Section 2. The formulas for the stability analysis are given in Theorem 3 in terms of
the ellipsoid parameters a, b, c and associated sphero-conical parameters I1, I2, I3 (that are functions

*E-mail: jairkoiller@gmail.com
**E-mail: castilho@dmat.ufpe.br

***E-mail: regis.ufrpe@gmail.com
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of a, b, c). These relations are found in Section 3. Sections 4 and 5 contain calculations leading to
the proof of Theorem 3. Some final comments are presented in Section 6. For completeness, confocal
quadrics and sphero-conical coordinate systems are reviewed in Appendix A. In Appendix B we
present a simple proof of the main theorem (Theorem 2) from Section 1. Appendix C outlines some
of the steps required for the numerical work.

The conformal map. The key is a “master equation” K
(√

1− κ2
)
/K(κ) = n(a, b, c) in Section 3,

see (3.25). The K’s are complementary complete elliptic integrals of the first kind1). The ratio on
the left-hand side comes from the sphero-conical coordinates [6, 7] for the round metric in the
sphere

ds2 =
μ2 − μ1

4

[
dμ2

1

(μ1 − I1)(μ1 − I2)(μ1 − I3)
− dμ2

2

(μ2 − I1)(μ2 − I2)(μ2 − I3)

]
.

Likewise, the right-hand side n(a, b, c) is the ratio of two complete elliptic integrals of the third
kind, coming from the ellipsoid metric in confocal coordinates

ds2 =
λ2 − λ1

4

[
λ1 dλ

2
1

(λ1 − a)(λ1 − b)(λ1 − c)
+

−λ2 dλ
2
2

(λ2 − a)(λ2 − b)(λ2 − c)

]
.

Together with (3.27), the master equation solution for κ yields the parameters I1, I2, I3 of the
sphero-conical coordinates in terms of the ellipsoid parameters a, b, c. This construction ensures that
the four artificial singular points of the sphero-conical coordinates correspond to the four umbilical
points of the ellipsoid. The coordinate lines in both systems have the same topology, going around
the singular points in the same fashion. Riemann surface theory shows that the construction is well
defined at these branch points upon composition to produce a conformal map from the ellipsoid
to the sphere. The conformal factor is simply h2 = (λ2 − λ1)/(μ2 − μ1). This is the key for our
analysis.

1. THE VORTEX PAIR SYSTEM

We normalize vorticities to ±1. The phase space for a vortex pair on a surface Σ with metric g
is Σ× Σ−D, the symplectic form is

Ωpair = Ω(σ1)− Ω(σ2), (1.1)

where Ω(σ) is the area form of (Σ, g). The Hamiltonian is

H = −Gg(σ1, σ2) +
1

2

(
Rg(σ1) +Rg(σ2)

)
, (1.2)

where Gg is the Green function of the Laplace –Beltrami operator Δg on Σ, and Rg, called Robin’s
function, is its regularization at the diagonal D,

Rg(σo) = lim
σ→σo

G(σ, σo)− log d(σ, σo)/2π, (1.3)

where d is the distance function of the metric g. The Green function satisfies

Δg G(σ, σo) = − 1

Area(Σ)
+ δ(σ, σo),

G(σ, σo)− log d(σ, σo)/2π bounded,
∫

Σ
G(σ, σo)Ω(σ) = 0, G(σ, σo) = G(σo, σ).

(1.4)

More information about vortices on closed surfaces can be found in [5], building up on D.Hally’s
seminal work [13].

1)In elliptic function theory, the ratio of the K′s on the left-hand side is the so-called nome function.
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1.1. Kimura’s Assertion

Let us assume Σ is a compact surface without boundary. The manifold Σ× Σ−D can be re-
compactified: one glues T 1Σ (where the geodesic motion takes place) to the diagonal, keeping track
of the direction that the two points σ1, σ2 approach each other. This is a well-known construction
(Axelrod – Singer [1] and Fulton –MacPherson [11]).

The Hamiltonian (1.2) can be rewritten as

H = − 1

2π
log d(σ1, σ2) +B(σ1, σ2). (1.5)

The function B, which was called Batman’s function, is given by

B(σ1, σ2) =
1

2

(
R(σ1) +R(σ2)

)
−
(
G(σ1, σ2)− log d(σ1, σ2)/2π

)
. (1.6)

It seems to be still an unexplored object in geometric function theory. Since B = O(d(σ1, σ2)
2,

near the diagonal the dominant term is − log d(σ1, σ2). Introduce a small parameter ε. Energy
conservation guarantees that, if d(s1, s2) is initially O(ε), it remains so for all time. A map from a
neighborhood of the zero section of T ∗(Σ) to a neighborhood of the diagonal of Σ×Σ is defined by

pσ ∈ T ∗Σ → vσ ∈ TΣ︸ ︷︷ ︸
Legendre transform

→ wσ = J(vσ/2)︸ ︷︷ ︸
rotate by π/2

→ (σ1, σ2) = (exp(−εwσ), exp(εwσ))︸ ︷︷ ︸
exponential map

. (1.7)

The vector vσ is perpendicular to the geodesic between σ1 and σ2 at the midpoint σ. Thus, it is
the direction of the proposed geodesic line.

The vortex problem in Σ× Σ−D has a symplectic form ΩΣ×Σ which is the area form in the
first factor minus the area form in the second. T ∗Σ has a canonical 2-form ΩT ∗Σ that is intrinsically
defined (no metric needed). What is the relation between them? Using local coordinates, one easily
shows that the pull back of (1.7) is

ΩΣ×Σ = ε2ΩT ∗Σ +O(ε4). (1.8)

Moreover, to leading order, the vortex problem is governed by the Hamiltonian

− ln d(s1, s2) = − ln |2εvq|. (1.9)

Therefore, under a suitable time scale reparametrization, the geodesic system is the blow-up of the
vortex pair problem at the diagonal. Obtaining the perturbation terms is in order.

1.2. Genus-0 Sufaces: Transporting the Vortex Problem to the Sphere

From now on we will confine ourselves with genus zero surfaces. One learns in basic courses that
two-dimensional ideal hydrodynamics behaves nicely under conformal mappings. So we are led to
consider a conformal map σ ∈ Σ → s ∈ S2. Two such maps differ by a Moebius transformation
of the target sphere. A metric on the sphere S2 is obtained by pushing forward the metric in Σ,
expressed as g = h2(s) go, where go denotes the constant curvature metric in S2. h2 is the conformal
factor. The equations for point vortices moving in Σ will be transported to corresponding virtual
points moving in S2.

Conversely, for any arbitrarily chosen positive (C∞ or analytic) function h2(s) one can consider

the abstract metric g = h2(s) go in the Riemann sphere2).

The symplectic form in S2 × S2 is given by

Ωpair = h2(s1)Ωo(s1)− h2(s2)Ωo(s2), (1.10)

2)Although such a general metric cannot always be realized as an embedded surface Σ ⊂ R
3, it can be done in R

5

(Gromov, [14]). For us this does not matter: in a “Platonic” perspective, ideal two-dimensional hydrodynamics
takes place on an abstract Riemann surface with a Riemannian metric g.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 1 2019
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where Ωo is the area form of the round sphere. The Hamiltonian is given by (for the derivation of
the change of Hamiltonian under a conformal map, see [5])

H =− 1

2
ln
(
h(s1)h(s2)|s1 − s2|2

)

=−
(
ln |s1 − s2|+

1

2
lnh(s1) +

1

2
lnh(s2)

)
,

(1.11)

where | | is the Euclidian distance. The equations of motion become imbedded in �3 ×�3:

ṡ1 =
1

h2(s1)

(
s1 × s2
|s1 − s2|2

− 1

2
s1 × gradh(s1)/h(s1)

)
(1.12)

ṡ2 =
1

h2(s2)

(
s1 × s2
|s1 − s2|2

+
1

2
s2 × gradh(s2)/h(s2)

)
. (1.13)

Studying the dynamics in the “virtual” sphere S2 is very convenient. For instance, we can
consider antipodal pairs in S2 even if Σ does not have the antipodal (or other) symmetries.

The following facts are not hard to prove (we will present them in detail in a separate publication
focused on surfaces of revolution).

i) The system (1.12), (1.13) is well defined, meaning that it behaves invariantly under a Moebius
transformation in the target sphere. This is a six-dimensional group.

ii) Any equilibrium pair (σ1, σ2) ∈ Σ× Σ, if one applies a conveniently chosen Moebius transfor-
mation, can be represented by an antipodal pair (s,−s) ∈ S2 × S2.

iii) An antipodal pair (s,−s) ∈ S2 × S2 is in equilibrium if and only if the gradient of h vanishes
at both s and −s.

iv) When a surface Σ has the antipodal symmetry σ → −σ, then there is a conformal map
preserving the antipodicity, so that grad h(−s) = −gradh(s), s ∈ S2.

For such surfaces iv), a key observation is the following:

Theorem 1. For surfaces with antipodal symmetry, the antipodal pairs (either seen in Σ or
equivalently in S2) form an invariant two-dimensional submanifold for the dynamics Sant =
{(s,−s) ∈ S2 × S2}.

Proof. The proof is very simple. In Sant the first terms of the two Eqs. (1.12), (1.13) disappear.
The second equation becomes

−ṡ1 = ṡ2 =
1

2h2(s2)

(
s2 × gradh(s2)/h(s2)

)

=
1

2h2(s1)

(
(−s1)× [−gradh(s1)/h(s1)]

)
(1.14)

and reproduces the first equation. �
A remark should be added to the first item i). By suitably repositioning the target sphere, any

Moebius transformation can be seen as a SO(3) rotation [30]. Hence we may assume, by performing
a SO(3) rotation, that an antipodal pair in Σ which is an equilibrium pair for the system, becomes
the north-south pair s∗1,2 = (0, 0,±1).

Take for coordinate systems the tangent planes x, y at the points s∗1, s
∗
2. Then (1.12), (1.13) can

be rewritten as a system of four ODEs for x1, y1, x2, y2.

Linearization. All we need are the quadratic expansions of the conformal factors at s∗1,2. There
are five parameters: the two pairs of coefficients of the quadratic forms and the angle θ between
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the principal axis of the second quadratic form and the principal axis of the first. We impose no
restrictions on the parameters of the quadratic forms, since we have no special concerns about
Gromov’s embedding problem. Clearly, it is possible to construct a Morse function h on the sphere
with arbitrary quadratic expansions at two chosen critical points (we will provide the linearization
in this general case in another publication).

Here we focus on surfaces with antipodal symmetry. The quadratic expansions at the poles are
the same, of the form

H(x, y) = h∗ + (1/2) p x2 + (1/2) q y2, h∗ > 0. (1.15)

Theorem 2. Denote p′ = p/h∗, q′ = q/h∗. The characteristic polynomial for the linearized system
factors as

[
λ2 + 4p′q′

] [
λ2 + 4(1− p′)(1− q′)

]
. (1.16)

The first factor corresponds to the invariant submanifold Sant. If p
′, q′ have the same sign, we have

a center on the restriction of the system to the invariant submanifold Sant. If p
′, q′ have opposite

signs, we have a saddle. For the transverse subspace: if (1− p′)(1− q′) > 0, we have linear stability;
if (1− p′)(1 − q′) < 0, we have a saddle.

Remark 1. Note the undefined situations when p or q are = 0 or 1.

Remark 2. For surfaces of revolution in R
3 with equatorial symmetry (spheroids, with p = q), we

can also show that −∞ < p � 1/2. The case p = q = 0 corresponds to the sphere.

The proof of Theorem 2 is given in Appendix B.

2. MAIN RESULT: COEFFICIENTS OF THE QUADRATIC EXPANSIONS

We now present the formulae for the coefficients of the quadratic expansions (1.15) at the axis
endpoints (A,−A), (B,−B), (C,−C). Together with Theorem 2 they determine the stability of
the vortex pair problem of the triaxial ellipsoid at the axis equilibria.

The quantities I1, I2, I3 (we will normalize I1 = 0) below are functions of a, b, c that are computed
via the master Eqs. (3.25), (3.27) presented in the next section (Section 3), which gives an explicit
conformal map from the ellipsoid to the sphere. The quadratic expansion is derived in Section 5
using the partial derivatives obtained in Section 4. Mixed terms in the quadratic expansion are
ruled out simply by symmetry considerations.

Theorem 3. In the notation of (1.15) we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h∗A =

√
c− b

I3 − I2

pA/h
∗
A =

1

I3 − I2

[
b− a

b
− (I2 − I1)

]

qA/h
∗
A =

1

I3 − I2

[
(I3 − I1)−

c− a

c

]
.

(2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h∗B =

√
c− a

I3 − I1

pB/h
∗
B =

1

I3 − I1

[
(I3 − I2)−

c− b

c

]

qB/h
∗
B =

1

I3 − I1

[
(I2 − I1)−

b− a

a

]
.

(2.2)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

h∗C =

√
b− a

I2 − I1

pC/h
∗
C =

1

I2 − I1

[
(I3 − I1)−

c− a

a

]

qC/h
∗
C =

1

I2 − I1

[
c− b

b
− (I3 − I2)

]
.

(2.3)

The results of the numerical implementation are presented in Tables 1 and 2. Without loss of
generality we fix c = 1, I1 = 0 so we omit them in the tables. We took a, b varying in units of 0.1.
We believe to have covered a sufficient range of a < b < 1 values.

Observing Table 1 we reach the following conclusions.

i) The minor axis antipodal equilibrium (A,−A) is center-center, since

0 < p′A < q′A < 1.

The conformal factor has a minimum.

ii) The middle axis antipodal equilibrium (B,−B) is a saddle for the invariant submanifold, and
a center in the transverse direction. We observe that

0 < p′B < 1, q′B < 0.

The conformal factor has a saddle at B,−B.

iii) The major axis antipodal equilibrium (C,−C) is a center-center, since

p′C < q′C < 0.

The conformal factor has a maximum.

Table 2 compares the values of

h2A =
c− b

I3 − I2
, h2B =

c− a

I3 − I1
, h2C =

b− a

I2 − I1
, h2U =

(b− a)(c− b)

b(I2 − I1)(I3 − I2)
.

The last expression is derived in Section 4. As expected, all along the table hA < hB < hC . It is
interesting to compare hB and hU , the value at the umbilical points. We observe that the difference
h2U − h2B can have both signs, meaning:

i) When h2U < h2B , then in the invariant submanifold there are two periodic orbits passing through
the opposite umbilical points at which the antipodal pair orbits around the points A and −A.

ii) When h2U > h2B , the antipodal pair orbits around the points C and −C.

iii) In the special situations where h2U = h2B , the separatrix emanating from (B,−B) passes
through the umbilical points.

3. CONFORMAL MAP OF THE TRIAXIAL ELLIPSOID TO THE SPHERE

In his 1839 note about the integrability of the geodesic problem on the triaxial ellipsoid [16],
and especially in [17], Jacobi used confocal quadrics coordinates to write the Riemannian metric
in E

2(a, b, c), induced by the Euclidian metric in the ambient space �3:

ds2
E
=

λ2 − λ1

4

[
J(λ1)dλ

2
1 − J(λ2)dλ

2
2

]
(3.1)

with

J(λ) =
λ

(λ− a)(λ− b)(λ− c)
. (3.2)
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Table 1. Stability of axis pairs (c = 1, I1 = 0).

a b I2 I3 p′A q′A p′B q′B p′C q′C

0.1 0.2 0.0163 5.7206 0.0848 0.8451 0.8573 −0.1720 −200.6683 −104.2811

0.1 0.3 0.0581 4.0752 0.1515 0.7904 0.8140 −0.4765 −84.7257 −28.9658

0.2 0.3 0.0425 3.0214 0.0976 0.7457 0.7543 −0.1514 −23.0377 −15.1976

0.1 0.4 0.1257 3.0724 0.2119 0.7372 0.7638 −0.9355 −47.1513 −11.5078

0.2 0.4 0.1078 2.3748 0.1730 0.6947 0.7020 −0.3757 −15.0739 −7.1144

0.3 0.4 0.0634 1.8846 0.1024 0.6505 0.6480 −0.1432 −7.0727 −5.0615

0.1 0.5 0.2163 2.3980 0.2676 0.6866 0.7013 −1.5778 −30.5278 −5.4646

0.2 0.5 0.1922 1.9150 0.2367 0.6472 0.6385 −0.6829 −10.8461 −3.7596

0.3 0.5 0.1435 1.5535 0.1819 0.6053 0.5857 −0.3368 −5.4338 −2.8562

0.4 0.5 0.0780 1.2567 0.1035 0.5571 0.5401 −0.1369 −3.1203 −2.2917

0.1 0.6 0.3262 1.9165 0.3189 0.6392 0.6211 −2.4387 −21.7141 −2.8314

0.2 0.6 0.2923 1.5724 0.2924 0.6034 0.5597 −1.0860 −8.3037 −2.0982

0.3 0.6 0.2369 1.2996 0.2476 0.5642 0.5099 −0.5872 −4.3632 −1.6717

0.4 0.6 0.1673 1.0662 0.1847 0.5186 0.4679 −0.3120 −2.5925 −1.3876

0.5 0.6 0.0875 0.8578 0.1027 0.4645 0.4316 −0.1311 −1.6243 −1.1836

0.1 0.7 0.4522 1.5586 0.3660 0.5953 0.5174 −3.5594 −16.4552 −1.4989

0.2 0.7 0.4053 1.3090 0.3419 0.5632 0.4612 −1.6003 −6.6396 −1.1722

0.3 0.7 0.3411 1.0998 0.3036 0.5269 0.4171 −0.9023 −3.6169 −0.9680

0.4 0.7 0.2658 0.9135 0.2513 0.4840 0.3807 −0.5301 −2.2067 −0.8248

0.5 0.7 0.1826 0.7423 0.1842 0.4329 0.3498 −0.2928 −1.4111 −0.7180

0.6 0.7 0.0936 0.5816 0.1010 0.3721 0.3232 −0.1256 −0.9091 −0.6347

0.1 0.8 0.5914 1.2847 0.4091 0.5549 0.3840 −4.9883 −13.0462 −0.7497

0.2 0.8 0.5288 1.1015 0.3863 0.5264 0.3384 −2.2434 −5.4817 −0.6105

0.3 0.8 0.4539 0.9392 0.3525 0.4930 0.3037 −1.2912 −3.0711 −0.5183

0.4 0.8 0.3715 0.7890 0.3077 0.4528 0.2757 −0.7965 −1.9136 −0.4509

0.5 0.8 0.2838 0.6470 0.2512 0.4046 0.2523 −0.4888 −1.2441 −0.3989

0.6 0.8 0.1920 0.5107 0.1819 0.3473 0.2323 −0.2767 −0.8124 −0.3574

0.7 0.8 0.0972 0.3787 0.0987 0.2795 0.2151 −0.1205 −0.5132 −0.3234

0.1 0.9 0.7413 1.0705 0.4483 0.5179 0.2141 −6.7807 −10.6968 −0.2942

0.2 0.9 0.6608 0.9353 0.4262 0.4929 0.1865 −3.0357 −4.6378 −0.2471

0.3 0.9 0.5740 0.8082 0.3956 0.4621 0.1661 −1.7643 −2.6569 −0.2145

0.4 0.9 0.4833 0.6861 0.3563 0.4245 0.1498 −1.1175 −1.6841 −0.1897

0.5 0.9 0.3898 0.5673 0.3077 0.3792 0.1365 −0.7230 −1.1100 −0.1701

0.6 0.9 0.2944 0.4509 0.2488 0.3252 0.1253 −0.4560 −0.7330 −0.1541

0.7 0.9 0.1974 0.3363 0.1787 0.2614 0.1157 −0.2626 −0.4674 −0.1408

0.8 0.9 0.0992 0.2231 0.0961 0.1867 0.1073 −0.1156 −0.2708 −0.1294
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Table 2. Values of the conformal factor at the distinguished points (c = 1, I1 = 0).

a b I2 I3 h2
A h2B h2

C h2
U h2

U − h2
B

0.1 0.2 0.0163 5.7206 0.140245078 0.157326155 6.134969325 4.301996266 4.144670111

0.1 0.3 0.0581 4.0752 0.17425506 0.220848057 3.442340792 1.999484333 1.778636276

0.2 0.3 0.0425 3.0214 0.234986069 0.264777918 2.352941176 1.84302799 1.578250072

0.1 0.4 0.1257 3.0724 0.203617606 0.292930608 2.386634845 1.214902185 0.921971577

0.2 0.4 0.1078 2.3748 0.264666961 0.336870473 1.85528757 1.227583306 0.890712833

0.3 0.4 0.0634 1.8846 0.329453108 0.371431604 1.577287066 1.299105315 0.927673711

0.1 0.5 0.2163 2.398 0.229179081 0.375312761 1.849283403 0.84763414 0.472321379

0.2 0.5 0.1922 1.915 0.290225215 0.417754569 1.560874089 0.906010036 0.488255467

0.3 0.5 0.1435 1.5535 0.354609929 0.45059543 1.282051282 1.087682432 0.537864303

0.4 0.5 0.078 1.2567 0.424196148 0.477440917 1.282051282 1.087682432 0.610241515

0.1 0.6 0.3262 1.9165 0.25152487 0.469606053 1.532801962 0.642563022 0.17295697

0.2 0.6 0.2923 1.5724 0.312475588 0.508776393 1.368457065 0.712682376 0.203905983

0.3 0.6 0.2369 1.2996 0.376399737 0.53862727 1.266357113 0.794427473 0.255800203

0.4 0.6 0.1673 1.0662 0.444988319 0.562746201 1.195457262 0.88660753 0.323861328

0.5 0.6 0.0875 0.8578 0.519278203 0.582886454 1.142857143 0.98910134 0.406214886

0.1 0.7 0.4522 1.5586 0.271149675 0.577441293 1.326846528 0.513962863 −0.06347843

0.2 0.7 0.4053 1.309 0.331968574 0.611153552 1.233654083 0.585049123 −0.026104429

0.3 0.7 0.3411 1.0998 0.395413207 0.63647936 1.172676634 0.662416898 0.025937538

0.4 0.7 0.2658 0.9135 0.463177397 0.65681445 1.128668172 0.746819408 0.090004958

0.5 0.7 0.1826 0.7423 0.536001429 0.67358211 1.095290252 0.838681629 0.16509952

0.6 0.7 0.0936 0.5816 0.614754098 0.687757909 1.068376068 0.938269381 0.250511472

0.1 0.8 0.5914 1.2847 0.288475407 0.700552658 1.18363206 0.426810926 −0.273741732

0.2 0.8 0.5288 1.1015 0.349222979 0.726282342 1.134644478 0.495304906 −0.230977437

0.3 0.8 0.4539 0.9392 0.412116217 0.745315162 1.101564221 0.567465599 −0.177849563

0.4 0.8 0.3715 0.789 0.479041916 0.760456274 1.076716016 0.644740129 −0.115716144

0.5 0.8 0.2838 0.647 0.550660793 0.772797527 1.057082452 0.727617327 −0.0451802

0.6 0.8 0.192 0.5107 0.62754942 0.783238692 1.041666667 0.81712164 0.033882948

0.7 0.8 0.0972 0.3787 0.710479574 0.792183787 1.028806584 0.913682579 0.121498793

0.1 0.9 0.7413 1.0705 0.303766707 0.840728631 1.079185215 0.364245044 −0.476483588

0.2 0.9 0.6608 0.9353 0.364298725 0.855340532 1.059322034 0.428788518 −0.426552014

0.3 0.9 0.574 0.8082 0.426985482 0.866122247 1.045296167 0.495918098 −0.370204149

0.4 0.9 0.4833 0.6861 0.493096647 0.874508089 1.034554107 0.566816846 −0.307691243

0.5 0.9 0.3898 0.5673 0.563380282 0.881367883 1.026167265 0.642358226 −0.239009657

0.6 0.9 0.2944 0.4509 0.638977636 0.88711466 1.019021739 0.723480113 −0.163634547

0.7 0.9 0.1974 0.3363 0.719942405 0.89206066 1.013171226 0.810472143 −0.081588517

0.8 0.9 0.0992 0.2231 0.807102502 0.896458987 1.008064516 0.904012659 0.007553672
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Jacobi also mentioned that these coordinates can be used to produce a conformal map of the
ellipsoid to the plane, the conformal factor becoming singular at the umbilical points. The umbilical
points are branch points from the complex analysis viewpoint.

Can one produce a map from the sphere to the plane having the same singular behavior? Upon
composition, the divergences would “cancel each other”. We claim that this can be achieved by
writing the standard Euclidian metric in the sphere in sphero-conical coordinates (see [6, 7])

ds2S2 =
μ2 − μ1

4

[
I(μ1) dμ

2
1 − I(μ2) dμ

2
2

]
(3.3)

with

I(μ) =
1

(μ − I1)(μ − I2)(μ − I3)
. (3.4)

We now give some details on the conformal map, following our previous work [26].

3.1. Matching the Coordinate Lines

One can combine the two systems of coordinates in order to produce a conformal map between
the two surfaces. Both metrics can be put in Liouville form [6] and the topologies of the coordinate
lines correspond (for the triaxial ellipsoid the coordinate lines are given explicitly in [2]).

Theorem 4. The conformal map from the triaxial ellipsoid to the unit sphere is defined by two
independent functions that relate separately the coordinate lines, μi = μi(λi), i = 1, 2. Each one is
constructed by combining one real incomplete elliptic integral of the third kind on λi followed by a
real Jacobi sn (inversion on an elliptic integral of the first kind on μi). The parameters I1, I2, I3
are chosen so that the ellipsoid umbilical points (λ1 = λ2 = b) map to the singular points of the
sphero-conical coordinates (μ1 = μ2 = I2). Thus, the two systems of coordinate lines on the surfaces
correspond. The conformal factor between the ellipsoid and the sphere is

h2 =
λ2 − λ1

μ2 − μ1
. (3.5)

The master equation (Theorem 5) shows how to obtain I1, I2, I3 as functions of a, b, c.

Technical details. We consider a �= 0. We will consider elsewhere the case a = 0 (double faced
elliptical region) for which the expression (3.2) simplifies. Let F be the incomplete Legendre elliptic
integral of the first kind

F (φ, k) =

∫ φ

0

dθ
√

1− k2 sin2 θ
=

∫ t

0

dt√
1− t2

√
1− k2t2

, (3.6)

where t = sinφ and Π is the incomplete elliptical integral of the third kind

Π(φ, 
, n) =

∫ φ

0

dθ

(1 + n sin2 θ)
√
1− 
2 sin2 θ

. (3.7)

The relations between λi and μi, i = 1, 2 are given by

P (λ1) = S(μ1) , Q(λ2) = T (μ2) (3.8)

where P,Q, S, T are defined by
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(i)

P (λ1) =

∫ λ1

a

√
t

(t− a)(t− b)(t− c)
dt =

2a
√
b(c− a)

Π(φ1, 
1, n1) (3.9)

with

φ1 = arcsin

√
b(λ1 − a)

λ1(b− a)
, (3.10)


1 =

√
1− (a/b)

1− (a/c)
(0 < 
1 < 1) and − 1 < n1 = −1 + a/b < 0. (3.11)

(ii)

Q(λ2) =

∫ c

λ2

√
−t

(t− a)(t− b)(t− c)
dt =

2c
√

b(c− a)
Π(φ2, 
2, n2) (3.12)

with

φ2 = arcsin

√
b(c− λ2)

λ2(c− b)
(3.13)


2 =

√
(c/b) − 1

(c/a)− 1
(0 < 
2 < 1) and n2 = c/b− 1 > 0. (3.14)

(iii)

S(μ1) =

∫ μ1

I1

√
1

(t− I1)(t− I2)(t− I3)
dt =

2√
I3 − I1

F(φ1, k1) (3.15)

φ1 = arcsin

√
μ1 − I1
I2 − I1

, k1 =

√
I2 − I1
I3 − I1

; (3.16)

(iv)

T (μ2) =

∫ I3

μ2

√
−1

(t− I1)(t− I2)(t− I3)
dt =

2√
I3 − I1

F(φ2, k2), (3.17)

φ2 = arcsin

√
I3 − μ2

I3 − I2
, k2 =

√
I3 − I2
I3 − I1

(3.18)

It is important to note that both k1, k2 and 
1, 
2 are complementary:

k21 + k22 = 1, 
21 + 
22 = 1. (3.19)

3.2. Master Equation: the Relation Between (a, b, c) and (I1, I2, I3)

We denote, as it is traditional, by

K(k) = F(
π

2
, k) =

∫ π/2

0

dθ
√

1− k2 sin2 θ
, 0 � k � 1 (3.20)

the complete elliptic integral of the first type. K(k) is an increasing function of k with K(0) =
π/2, K(1) = ∞ diverging logarithmically.
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We now enforce the requirement that the umbilical points of the ellipsoid do correspond to the
artificial singular points in the sphere. This insures that the correspondence between E

2(a, b, c)
and S2 is well defined. As we showed in [26], this amounts to the equalities

K(k1) =

√
I3 − I1
2

P (b), K(k2) =

√
I3 − I1
2

Q(b), (3.21)

where we have the complete integrals of the third kind

P (b) =
2a

√
b(c− a)

Π(π/2, 
1, n1) (3.22)

Q(b) =
2c

√
b(c− a)

Π(π/2, 
2, n2), (3.23)

where we changed the notation for (3.7) to

Π(x, 
, n) =

∫ x

0

dt

(1 + nt2)
√

(1− t2)(1− 
2t2)
, x = sinφ. (3.24)

Observing that k1 and k2 are complementary, i. e., k21 + k22 = 1 , we get

Theorem 5 (Master Equation). The modulus k1 is the solution of

K
(√

1− k21

)

K(k1)
= n(a, b, c), (3.25)

where

n =
Q(b)

P (b)
=

c

a

Π(π/2, 
2, n2)

Π(π/2, 
1, n1)
. (3.26)

After getting k1, the parameters I1, I2 and I3 are obtained from

I3 − I1 = 4

(
K(k1)

P (b)

)2
[

= 4

(
K(k2)

Q(b)

)2
]

(3.27)

I2 − I1 = (I3 − I1) k
2
1 ,

(
I3 − I2 = (I3 − I1) k

2
2 is redundant

)
.

No harm is done by setting I1 = 0 for simplicity.

The left-hand side of (3.25) decreases from ∞ to 0 as k1 runs from 0 to 1. Thus, there is an unique
solution to this equation.

Remark 3. Interestingly, the “fake” singular points in the sphere corresponding to the umbilics
of the ellipsoid are

(±k1, 0, ±k2).

3.3. About the Equation K
(√

1− k2
)
/K(k) =

√
r

The solution k = Λ(r) of this equation is called the elliptic lambda function ([28, Section 4]),
and can be obtained via Jacobi theta functions (see, e. g., [27, Sections 7.8–7.10]).

k =

[
θ2(0, qr)

θ3(0, qr)

]2
(3.28)

where qr = exp(−π/
√
r) is called the nome and the theta functions are

θ2(0, q) =

∞∑

m=−∞
q(m+1/2)2 , θ3(0, q) =

∞∑

m=−∞
qm

2
. (3.29)
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4. PRELIMINARY CALCULATIONS FOR THE MAIN THEOREM

It is immediate that ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h2(A) =
c− b

I3 − I2

h2(B) =
c− a

I3 − I1

h2(C) =
b− a

I2 − I1

(4.1)

We now show that

h2(U) =
(b− a)(c− b)

b(I2 − I1)(I3 − I2)
. (4.2)

and derive the coefficients of the quadratic expansion of h at A, B, C in the next section.

First we compute the partial derivatives dλ2/dμ2, dλ1/dμ1 at the special values I1, I2, I3. By the
chain rule we get

dλ1/dμ1 =

[
(λ1 − a)(b− λ1)(c − λ1)

λ1(μ1 − I1)(I2 − μ1)(I3 − μ1)

]1/2
, (4.3)

dλ2/dμ2 =

[
(λ2 − a)(λ2 − b)(c − λ2)

λ2(μ2 − I1)(μ2 − I2)(I3 − μ2)

]1/2
. (4.4)

We presented the following trick in [26]:

dλ1

dμ1
(I1) = lim

μ1→I1

[
(λ1 − a)(b− a)(c − a)

a(μ1 − I1)(I2 − I1)(I3 − I1)

]1/2

=

[
(b− a)(c− a)

(I2 − I1)(I3 − I1)

]1/2
lim

μ1→I1

[
λ1 − a

μ1 − I1

]1/2

=

[
(b− a)(c − a)

a(I2 − I1)(I3 − I1)

]1/2
×
[
dλ1

dμ1
(I1)

]1/2
, (4.5)

hence

dλ1

dμ1
(I1) =

(b− a)(c− a)

a(I2 − I1)(I3 − I1)
. (4.6)

In a similar fashion we get

dλ2

dμ2
(I3) =

(c− a)(c− b)

c(I3 − I1)(I3 − I2)
, (4.7)

and moreover,

dλ1

dμ1
(I2) =

dλ2

dμ2
(I2) =

(b− a)(c− b)

b(I2 − I1)(I3 − I2)
. (4.8)

It follows that

h2(U) = lim
μ2↘I2

λ2 − b

μ2 − I2
= dλ2/dμ2(I2)

= lim
μ1↗I2

b− λ1

I2 − μ1
= dλ1/dμ2(I2)

=
(b− a)(c− b)

b(I2 − I1)(I3 − I2)
. (4.9)

Remark 4. One may wonder if the gradient of h could vanish at U for some special values of
a,b,c, but our tables and further theoretical calculations indicate that it does not happen.
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5. PROOF OF THE MAIN THEOREM 3

We want to obtain the quadratic expansion of h at the axis endpoints A,B,C. It is more
convenient to expand h2 instead of h,

h2 =
[
h∗ +

p

2
x2 +

q

2
y2 + . . .

]2
= h2∗ + ph∗x

2 + qh∗y
2 + . . . (5.1)

We now show that

pA h∗A =
c− b

(I3 − I2)2

[
b− a

b
− (I2 − I1)

]
(5.2)

qA h∗A =
c− b

(I3 − I2)2

[
(I3 − I1)−

c− a

c

]
.

pB h∗B =
c− a

(I3 − I1)2

[
(I3 − I2)−

c− b

c

]
(5.3)

qB h∗B =
c− a

(I3 − I1)2

[
(I2 − I1)−

b− a

a

]
.

pC h∗C =
b− a

(I2 − I1)2

[
(I3 − I1)−

c− a

a

]
(5.4)

qCh
∗
C =

b− a

(I2 − I1)2

[
c− b

b
− (I3 − I2)

]
.

Proof. The derivations use the partial derivatives in the previous section (Section 4). We present
only the calculation for point C. The formulas for A and B are obtained in a similar fashion.

i) Moving from C towards A in the x1 direction (see Appendix A) we have

μ2 ≡ I2, μ1 = I1 + x21(I3 − I1),

therefore

h2C(x1, 0) =
b− λ1(I1 + x21(I3 − I1)

I2 − (I1 + x21(I3 − I1))

=
1

I2 − I1

b−
(
a+ x21(I3 − I1) dλ1/dμ1(I1) + . . .

)

1− x21(I3 − I1)/(I2 − I1)
=

=
b− a

I2 − I1

[
1− x21

I3 − I1
b− a

dλ1/dμ1(I1) + . . .

]

×
[
1 + x21(I3 − I1)/(I2 − I1) + . . .

]

=
b− a

I2 − I1

[
1− x21

����I3 − I1
���b− a

����(b− a)(c− a)

a(I2 − I1)�����(I3 − I1)
+ . . .

]

×
[
1 + x21(I3 − I1)/(I2 − I1) + . . .

]

=
b− a

I2 − I1

[
1 + x21

1

I2 − I1

(
I3 − I1 −

c− a

a

)
+ . . .

]
(5.5)

ii) From C moving towards B in the x2 direction we have

μ1 ≡ I1, μ2 = I2 + x22(I3 − I2),

therefore,

h2(0, x2) =
λ2

(
I2 + x22(I3 − I2)

)
− a

I2 + x22(I3 − I2)− I1

=
1

I2 − I1

b− a+ x22(I3 − I2) dλ2/dμ2(I2) + . . .

1 + x22(I3 − I2)/(I2 − I1)
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=
b− a

I2 − I1

(
1 + x22

I3 − I2
b− a

dλ2/dμ2(I2) + . . .

)

×
(
1− x22(I3 − I2)/(I2 − I1)

)

=
b− a

I2 − I1

(
1 + x22

����I3 − I2
���b− a

����(b− a)(c− b)

b(I2 − I1)�����(I3 − I2)
+ . . .

)

×
(
1− x22(I3 − I2)/(I2 − I1)

)

=
b− a

I2 − I1

[
1 + x22

1

I2 − I1

(
c− b

b
− I3 + I2

)
+ . . .

]
. (5.6)

�

6. FINAL COMMENTS

6.1. Historical Notes

i) Jacobi and Riemann were the first to study iK ′/K. According to [27], Riemann regarded this
ratio as a complex function of κ2 with branch points 0, 1,∞, and “as early as 1828, Jacobi was
aware that κ2 was a modular function of iK ′/K with respect to the subgroup Γ(2) of the full
modular group”. The study was pursued further by Dedekind, Hermite, Schwarz, Picard and
other contemporaries.

ii) Triaxial ellipsoids are emblematic. The theory of integrable Hamiltonian systems got started
at Königsberg, on Wednesday, December 26, 1838. In a letter to Bessel, dated two days later,
Jacobi wrote:

“Ich habe vorgestern die geodätische Linie für ein Ellipsoid mit drei ungleichen Achsen
auf Quadraturen zurückgeführt. Es sind die einfachsten Formeln von der Welt, Abelsche
Integrale, die sich in die bekannten elliptischen verwandeln, wenn man 2 Achsen gleich
setzt” ([15], p. 385)3).

6.2. Some Directions for Further Research

i) As regards Section 1.1, it would be interesting to obtain the next order term in the deformation
of the canonical symplectic form in T ∗Σ and of the perturbation of the Hamiltonian geodesic
system, both arising from the pullback of the vortex pair problem near the diagonal to a
neighborhood of the zero section of T ∗Σ.

ii) Floquet analysis of the periodic orbits that fill the invariant submanifold Sant given by
Theorem 1. For that purpose several symplectic integrators on products of spheres are available,
such as [21–23, 31]. Appendix C outlines some steps of the procedure.

iii) There is a sizeable amount of literature about center-saddle equilibria [3, 12, 19, 20, 24, 25]. It
would be interesting to apply it around (B,−B) as a first step to understand the transversal
structure to the global center manifold Sant.

iv) Hamiltonians in products of spheres also appear in spin systems, so it is interesting to find

integrable Hamiltonians in (S2)N with weighted symplectic forms (positive or negative). In
the case of vortex pairs with opposite vorticities, we believe that, unfortunately, there are no
integrable cases, except surfaces of revolution. This is because (in view of Kimura’s assertion)
the candidates can only be the surfaces whose metrics yield integrable geodesic systems. Those
are classified (see, e. g., [6–8, 29]). It would be the matter of numerically simulating them to
exhibit chaotic behavior as we did in [26], or to apply some of the traditional theoretical
methods (Melnikov, Ziglin, Morales –Ramis, etc.).

3)The day before yesterday, I reduced to quadrature the problem of geodesic lines on an ellipsoid with three unequal
axes. They are the simplest formulas in the world, Abelian integrals, which become the well-known elliptic integrals
if 2 axes are set equal. (Translation in https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid.)
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v) In the opposite direction are surfaces with negative curvature. Their geodesics play a key
role in the interplay of differential geometry and other branches of pure mathematics. Trace
formulas relate the distribution of eigenvalues of the Laplacian to the distribution of lengths of
closed geodesics. Those techniques are one of the tools used in studies related to the Riemann
hypothesis [4]. Could vortex pairs be used as well?

APPENDIX A. COORDINATES ON THE ELLIPSOID AND ON THE SPHERE

Confocal Quadrics Coordinates (λ1, λ2)

The ellipsoid

E
2(a, b, c) :

x2

a
+

y2

b
+

z2

c
= 1 , a < b < c (A.1)

corresponds to the root λo = 0 of the cubic equation

x2

a− λ
+

y2

b− λ
+

z2

c− λ
= 1.

The other two roots

λo = 0, a < λ1 < b < λ2 < c

define two confocal hyperboloids (of one and two sheets) forming a triorthogonal family. These
coordinates (λ1, λ2) ∈ [a, b] × [b, c] parametrize each octant of the ellipsoid by

x2 =
a(a− λ1)(a− λ2)

(a− b)(a− c)
,

y2 =
b(b− λ1)(b− λ2)

(b− a)(b− c)
,

z2 =
c(c − λ1)(c− λ2)

(c− a)(c− b)
.

(A.2)

Sphero-conical Coordinates (μ1, μ2)

Similarly, each octant of the sphere

S2 : x21 + x22 + x23 = 1 (A.3)

is parametrized by (μ1, μ2) ∈ [I1, I2]× [I2, I3] via

x21 =
(I1 − μ1)(I1 − μ2)

(I1 − I2)(I1 − I3)
,

x22 =
(I2 − μ1)(I2 − μ2)

(I2 − I1)(I2 − I3)
,

x23 =
(I3 − μ1)(I3 − μ2)

(I3 − I1)(I3 − I2)
.

(A.4)

The sphero-conical coordinates are defined by a triorthogonal system of cones and spheres, with
parameters I1 < I2 < I3:

X2
1

I1 − μ
+

X2
2

I2 − μ
+

X2
3

I3 − μ
= 0, X2

1 +X2
2 +X2

3 = r2. (A.5)

Equations (A.4) for the xi = Xi/r solve the matrix system
⎡

⎢
⎢
⎢
⎣

1 1 1

1/(I1 − μ1) 1/(I2 − μ1) 1/(I3 − μ1)

1/(I1 − μ2) 1/(I2 − μ2) 1/(I3 − μ2)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x21

x22

x23

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

1

0

0

⎤

⎥
⎥
⎥
⎦
. (A.6)
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Given (x1, x2, x2) ∈ S2, the sphero-conical coordinates I1 � μ1 � I2 < μ2 � I3 satisfy the
quadratic equation

μ2 −
[
(x21(I2 + I3) + x22(I1 + I3) + x23(I1 + I2)

]
μ

+ (x21I2I3 + x22I1I3 + x23I1I2) = 0.
(A.7)

The coordinates are the same on all concentric spheres, and we can make r = 1.

Ten Special Points

The semiaxis endpoints of the ellipsoid correspond to

(A,−A) : λ1 = b, λ2 = c ⇒
(
±
√
a, 0, 0

)
,

(B,−B) : λ1 = a, λ2 = c ⇒
(
0, ±

√
b, 0

)
, (A.8)

(C,−C) : λ1 = a, λ2 = b ⇒
(
0, 0, ±

√
c
)
.

The four umbilical points, with λ1 = λ2 = b, are located in the middle ellipse:

(U++, U+−, U−+, U−−) :

(

±
√

a(b− a)

c− a
, 0, ±

√
c(c− b)

c− a

)

. (A.9)

We have the corresponding points on the main equators of the sphere

μ1 = I2, μ2 = I3 ⇒ (±1, 0, 0) ,

μ1 = I1, μ2 = I3 ⇒ (0, ±1, 0) , (A.10)

μ1 = I1, μ2 = I2 ⇒ (0, 0, ±1) .

There are four special points located in the equator (x2 = 0) with

(V++, V+−, V−+, V−−) : (±k1, 0, ±k2) , k1 =

√
I2 − I1
I3 − I1

, k2 =

√
I3 − I2
I3 − I1

. (A.11)

As a → b, the triaxial ellipsoid tends to a prolate ellipsoid of revolution around the z-axis.
The umbilical points U++, U−+ merge with C, U+−, U−− with −C. In the image sphere we have
k1 → 0. Likewise, when b → c, the triaxial ellipsoid tends to an oblate ellipsoid of revolution around
the x-axis, with k1 → 1. As a → 0, the triaxial ellipsoid tends to a double faced planar elliptical
region.

Formulas for the Sphero-conical Cordinates Along the Main Equators

The expressions for μ1, μ2 in terms of (x1, x2, x3) are very simple along the principal great circles,
with a slight twist on x2 ≡ 0. From (A.7),

i) Equator x3 ≡ 0. Here μ2 ≡ I3. The other solution is given by

μ1 = x21I2 + x22I1, x21 + x22 = 1. (A.12)

ii) Equator x1 ≡ 0. Here μ1 ≡ I1. The other solution is given by

μ2 = x23I2 + x22I3, x22 + x23 = 1. (A.13)

iii) The equator x2 = 0 (corresponding to the middle ellipse y = 0) is especially important. μ = I2
is likewise one solution, and the other is

μ∗ = x21 I3 + x23 I1, x21 + x23 = 1. (A.14)

But here from (1, 0, 0) to V++ we have μ1 ≡ I2, μ2 = μ∗, and from V++ to (0, 0, 1) we have
μ2 = I2, μ1 = μ∗ . Recall that μ1 = μ2 = I2 at the V ’s.
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APPENDIX B. PROOF OF THEOREM 2

For surfaces with antipodal symmetry, since Sant is invariant under the flow, we know that the
linearization matrix at an antipodal pair in equilibrium (we may assume at the north and south
poles of the sphere) will have an invariant subspace W1 ⊂ R

4 generated by v1 = (1, 0,−1, 0), v2 =
(0, 1, 0,−1). A quick computation shows that the linearization matrix A is given by

A =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

0 γ 0 −1

δ 0 1 0

0 −1 0 γ

1 0 δ 0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

(B.1)

where

γ = −1 + 2q/h, δ = 1− 2p/h. (B.2)

where the conformal factor expands as (1.15)

H(x, y) = h+ (1/2) p x2 + (1/2) q y2, h > 0.

Matrix A has indeed two invariant subspaces of dimension 2:

i) V spanned by v1 = (1, 0,−1, 0), v2 = (0, 1, 0,−1). We have

Av1 = (δ − 1)v2 = (−2p/h) v2, Av2 = (1 + γ)v1 = (2q/h)v1; (B.3)

ii) W spanned by w1 = (1, 0, 1, 0), w2 = (0, 1, 0, 1) . We have

Aw1 = (δ + 1)w2, Aw2 = (γ − 1)w1. (B.4)

The first subspace V is tangent to the center manifold (s1 = −s2), while W is transverse to it. On
the subspace V = span{v1, v2}, the eigenvalues satisfy

λ2 = (δ − 1)(1 + γ) = −4pq/h2, (B.5)

and on the subspace W = span{w1, w2}, the eigenvalues satisfy

λ2 = (γ − 1)(δ + 1) = −4(1− p/h)(1 − q/h). (B.6)

APPENDIX C. OUTLINE FOR NUMERICAL SIMULATIONS

One first solves the master equation to obtain I1, I2, I3 in terms of a, b, c. At each time step
of the symplectic integrator for (1.12), (1.13), one applies the following sequence of mappings to
compute the conformal factor.

1) Solve the quadratic equation (A.7) obtaining μ1, μ2 in terms of x1, x2, x3. This is a bit of a
nuisance algebraically because of the ± outside the square roots, but numerically it is nice
and easy: the discriminant is always positive. μ2 receives the + square root.

2) Compute the functions λi(μi), i = 1, 2, each given by one elliptic integral and one inversion.
Fast and reliable codes are available for that purpose [9, 10].

3) In order to solve the EDOS (1.12), (1.13) in S2 × S2, only the conformal factor given by

h =
√

(λ2 − λ1)/(μ2 − μ1) is needed. The sphere representation provides the octants where
the two vortices are located.

4) If one desires to plot the curves in the “physical ellipsoid” E(a, b, c), then one computes
(x, y, z) via the parametrization (A.2), keeping track of the octant one is traversing in the
representing sphere S2 (signs of the corresponding coordinates are the same).
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30. Siliciano, R., Constructing Möbius Transformations with Spheres, Rose-Hulman Undergrad. Math. J.,
2012, vol. 13, no. 2, pp. 115–124.

31. Vankerschaver, J. and Leok, M., A Novel Formulation of Point Vortex Dynamics on the Sphere:
Geometrical and Numerical Aspects, J. Nonlinear Sci., 2014, vol. 24, no. 1, pp. 1–37.

REGULAR AND CHAOTIC DYNAMICS Vol. 24 No. 1 2019



On the stability of vortex pairs

moving on Riemann surfaces of genus zero

Adriano Regis Rodrigues∗, César Castilho† and Jair Koiller‡

Abstract

This paper is a continuation of [7], that focused on vortex pairs motion
on surfaces with antipodal symmetry such as the triaxial ellipsoid. We
present the (linear) stability analysis of an equilibrium for an arbitrary
genus zero surface. In particular, we present an easy way to compute
on the pair of poles on a surface of revolution of genus zero (an ovoid).
It is expected that this pair is linearly stable - however, we observe
that two of the eigenvalues can vanish exceptionally. Calculations for
the double faced elliptical region are also presented, a limit case of the
triaxial ellipsoid.
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1 Introduction

Motivation for the study of point vortices on curved surfaces comes mainly
from two dimensional condensed matter physics: liquid crystals, superfluids,
Bose Einstein condensates and soft materials. Soon it may be experimentally
possible to produce fluids of cold atoms on a prescribed surface [1], [2].

Vortex pairs, with opposite vorticities have been observed experimentally
in BE condensates since at least 2010 [3]. Their dissociation are manifes-
tations of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition1. For
a mathematician the interest on vortex pairs on a surface Σ with metric g
comes from the fact that a closeby pair shadows the geodesic perpendicular
to the midpoint. This was predicted by [4], and verified numerically for the
catenoid and the triaxial-ellipsoid [5], [6].

This is a sequel of our previous paper [7] about the motion of vortex pairs
on surfaces with antipodal symmetry. A special feature of those surfaces is
that the antipodal pairs form an invariant submanifold Σant = {(σ,−σ)}.
We analyzed the stability of equilibria of the pairs in the three symmetry
axis of the triaxial ellipsoid.

Here we present some additional examples and also discuss other aspects,
including surfaces of revolution. For those, we show that the pair at the poles
is always linearly stable, except for the possibility of a degenerate case when
one of the frequencies vanishes.

1.1 Equations of motion

We developed in [7] the idea of representing a genus zero surface Σ with
metric g conformally over the sphere S2 ⊂ R3 with constant curvature
metric go, so that h = h2(s) go, s ∈ S2 where h is the conformal factor. While
the ‘true’ physical object is Σ, transporting the dynamics to the ‘virtual’
sphere S2 proves to be very convenient. The Hamiltonian description goes
as follows. Let | | the euclidian distance between s1, s2 ∈ S2 ⊂ R3.

Proposition 1. The symplectic form in S2 × S2 is given by

Ωpair = h2(s1)Ωo(s1)− h2(s2)Ωo(s2) (1)

where Ωo is the area form of the round sphere, and the Hamiltonian is

H =− ln
(√

h(s1)h(s2) |s1 − s2|
)
. (2)

1Kosterlitz was one of the 2016 Physics Nobel prize laureates.
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The equations of motion are therefore

ṡ1 =
1

h2(s1)

(
s1 × s2

|s1 − s2|2
− 1

2h(s1)
s1 × gradh(s1)

)
(3)

ṡ2 =
1

h2(s2)

(
s1 × s2

|s1 − s2|2
+

1

2h(s2)
s2 × gradh(s2)

)
.

All the required information is contained in the conformal factor h.

The sphere (h ≡ 1) is highly degenerate in the sense that all antipodal
pairs are in equilibrium. In [8] it was shown that for generic h there are
finitely many equilibria and infinitely many periodic orbits. Together with
|s1| = |s2| = 1, the equilibrium configurations will satisfy six equations for
s1, s2, α, β

s2

|s1 − s2|2
− gradh(s1)

2h(s1)
= α s1 , − s1

|s1 − s2|2
+

gradh(s2)

2h(s2)
= β s2 . (4)

1.2 Invariance under Moebius transformations

In [7] we mentioned the following basic properties:

Proposition 2.

i) The EDOs (3) transform invariantly under Moebius transformations on
the extended complex plane C ∪∞ ≡ S2 .

ii) An antipodal pair (s,−s) is an equilibrium if and only if the gradient of
the conformal factor vanishes at both s and −s.

iii) For the purpose of linearization, under a Moebius transformation, any
pair at equilibrium can be represented by the poles (0, 0,±1). Moreover
the Moebius transformation can be chosen to produce equal conformal
factors at the poles.

Point i) reflects the fact that Proposition 1 must be intrinsic. Two conformal
maps from Σ to S2 (extended complex plane C ∪ ∞) differ by a Moebius
transformation. One can avoid doing the algebra by a geometric reason-
ing. Moebius transformations correspond to a SO(3) rotation on a suitably
translated sphere S2 ⊂ <3, composed with one stereographic transforma-
tions and one inverses [9]. Points ii) and iii) clearly show the usefulness of
the representation (3).
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In [7] we explored the following observation:

Proposition 3. For conformal metrics whose factor h(s) has the antipodal
symmetry, the set of antipodal points Sant = {(s,−s) |s ∈ S2} form an
invariant submanifold, governed by

ṡ1 = − 1

h3(s1)
s1× gradh(s1) = − 1

h2(s1)
s1× grad log h(s1) (s2 = −s1) (5)

Trajectories of s1 are on the level curves of h. Equilibria coincide with the
critical points of h.

2 Linearization of Equilibria.

We just saw that for genus zero surfaces, with the help of the conformal fac-
tor, we can represent the dynamics in the sphere S2. Moreover, in making
general reasonings about stability, we may assume that a given equilibrium
solution pair for the system (4) is antipodal, and we will in fact take them
as the north and south poles.

Note that the original surface Σ may not have symmetries at all!

We will now discuss the linear stability of an antipodal equilibrium in
terms of the quadratic expansions of the conformal factors. Finding h2 is a
global problem, but interestingly, for surfaces of revolution, the equilibrium
of the pair at the poles is always linearly stable, except for a degenerate case
when one of the frequencies vanishes.

The study will extend the one we presented in [7]. As we did there, we
start by taking for the antipodal pair in S2 the poles

s∗1,2 = (0, 0,±1) .

We take for coordinate systems the corresponding tangent planes. Then
eliminating the z coordinates, (3) yields a system of four ODEs on the
cartesian coordinates x1, y1, x2, y2. All we will need for the linear analysis
are the quadratic expansions H of the conformal factor

h(x, y, z), with z = ±(1− x2 − y2)1/2

at s∗1,2. In general there will be two (different) pairs of quadratic coefficients
and a rotation of an angle θ of the principal axis of the second quadratic
form with respect to the principal axis of the first. This is encoded in:
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Data needed for the linearization

H1(x1, y1) = h1 +
1

2

(
p1 x

2
1 + q1 y

2
1

)
(6)

H2(x2, y2) = h2 +
1

2

(
p2 (x′2)2 + q2 (y′2)2

)
(7)

with h1, h2 > 0 and where

x′2 = x2 cos θ − y2 sin θ

y′2 = x2 sin θ + y2 cos θ .
(8)

We stress emphatically that there are global informations hidden in these
local expansions. They must be interdependent.

For instance, on a surface of revolution, choose a parallel γ, and let Dγ the
cap surrounding the south pole bounded by γ. Due to the rotational sym-
metry, there is a unique conformal map from Dγ to the unit disk D in the
complex plane sending meridians to rays.

It extends to a unique global conformal map from Σ to the extended com-
plex plane R∪∞ ≡ S2. So the expansion at z =∞ is tied to the expansion
at z = 0.

We will see shortly that a Moebius transformation on the sphere preserving
the poles can be chosen so that the conformal factors h1 and h2 can be made
equal.

For a general surface Σ without symmetries, imagine a domain Dγ bounded
by a simple closed curve γ ⊂ Σ. Let Dr the geodesic disk of radius r, around
say, the south pole of the sphere. There is a conformal map from Dγ to Dr,
providing a local expansion like (6). But that conformal map will not extend
(except for a stroke of luck) to a global map from Σ to S2.
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2.1 The linearized Hamiltonian system

Theorem 1. When we substitute in (3)

s1 =

(
x1, y1,

√
1− x2

1 − y2
1

)

s2 =

(
x2, y2,−

√
1− x2

2 − y2
2

)
and retain only the linear terms we get the Hamiltonian

H =
1

8
[(x1 + x2)2 + (y1 + y2)2]− 1

4h1
H1(x1, y1)− 1

4h2
H2(x2, y2) (9)

and symplectic form

Ω = h2
1 dx1 ∧ dy1 + h2

2 dx2 ∧ dy2 (10)

where the quadratic expansions H1, H2 are given by (6, 7).

The linearized system is therefore

4h2
1 (ẋ1, ẏ1) = (−y1 − y2, x1 + x2) +

2

h1
(∂H1/∂y1,−∂H1/∂x1)

(11)

4h2
2 (ẋ2, ẏ2) = (−y1 − y2, x1 + x2) +

2

h2
(∂H2/∂y2,−∂H2/∂x2)

Note that the plus sign in the symplectic form even though the vortices are
opposite. This is due to the fact that the expansions are done in antipodals
(0, 0,±1). The factor 4 results form the distance between the poles being 2.

We will show that we may assume h1 = h2 = h in (6, 7). Then the linearized
system (11) will be written in matrix form as

4h2Ẋ = AX , X = (x1, y1, x2, y2)† . (12)

The factor 4h2 is irrelevant for the analysis. It can be made equal to one
by a linear change of time scale. From now on we will neglect this factor on
the eigenvalue formulas.
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Theorem 2.

Assuming h1 = h2 = h the matrix of the system is

A =



0 γ1 0 −1

δ1 0 1 0

0 −1 a b

1 0 c −a


(13)

whose characteristic polynomial is (as expected) a biquadratic,

p(λ) = λ4 − 2ρλ2 + κ (14)

ρ =
1

2

(
a2 + bc+ γ1δ1

)
− 1 (15)

κ = 1 + (a2 + bc)γ1δ1 − γ1b− cδ1 . (16)

The coefficients (depending on the data h, p1, q1, p2, q2, θ) are:

γ1 = −1 + 2 (q1/h)

δ1 = 1− 2 (p1/h)

a = 2 sin θ cos θ [(q2/h)− (p2/h)] (17)

b = −1 + 2
[
(q2/h) cos2 θ + (p2/h) sin2 θ

]
c = 1− 2

[
(p2/h) cos2 θ + (q2/h) sin2 θ

]
One verifies a simplification valid for arbitrary θ:

a2 + bc = γ2δ2 (18)

where
γ2 = −1 + 2 (q2/h) , (19)

δ2 = +1− 2 (p2/h) . (20)
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Example. When there is no twist between the principal axis, ie., θ = 0 the
characteristic polynomial has a more symmetric form

p(λ) = λ4 + (2− δ1γ1 − δ2γ2)λ2 + (1− δ1δ2)(1− γ1γ2) (21)

The discriminant of this biquadratic is

∆ = (δ1γ1 − δ2γ2)2 + 4(δ1 − γ2)(δ2 − γ1) . (22)

For instance, with these (more or less randomly chosen) values

p1 = 0.1, q1 = 11/30, p2 = 0.6, q2 = 0.2

we get loxodromic eigenvalues, since ∆ = −(3.2)(14/15) < 0 .

In the conclusions we present some questions related to the ranges of
(15, 16) in (14).

The following Lemma shows that without loss of generality we could (as
we did) assume h1 = h2 = h in Theorem 2.

Lemma 1. The conformal factor can be adjusted in order to make

h(0, 0,−1) = h(0, 0, 1) . (23)

More precisely, we can replace h1, h2 by a common factor h given by

h = h1β = h2/β, β = (h2/h1)1/2 . (24)

and replace the parameters in (13) via

γnew1 = β2 γ1

δnew1 = β2 δ1

γnew2 = (1/β2) γ2 (25)

δnew2 = (1/β2) δ2

where
γi = −1 + 2qi/hi , δi = 1− 2 pi/hi .

The proof of Lemma 1 will be done next.
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The adjustment parameter β

Consider the conformal map from the unit sphere to itself

gβ : (x, y, z)→ (x̃, ỹ, z̃)

that fixes the poles, but shifts parallels up or down, corresponding to a
homothety in the equatorial complex plane C, given by

r = β r̃.

A short calculation yields

z =
β2(1 + z̃)− (1− z̃)
β2(1 + z̃) + (1− z̃)

(26)

where z = sinφ, z̃ = sin φ̃ are the heights of the corresponding parallels
given by φ, φ̃. The conformal factor from the (x, y, z) sphere (called ‘old’ for
short) to the (x̃, ỹ, z̃) sphere (called new’) is

hold/new =
cosφ

cos φ̃
=

√
1− z2

√
1− z̃2

=
2β

(β2 − 1)z̃ + (β2 + 1)
(27)

Substituting z̃ = ±1 gives

hold/new(−1) = β , hold/new(1) = 1/β (28)

which in hindsight is what one should expect.
Since conformal factors multiply composition, we can choose a suitable β

so that, upon composition of the original map from Σ to S2 with gβ : S2 →
S2, the conformal factors at the poles become equal. In fact, the common
factor h satisfies

h = h1β = h2/β, β = (h2/h1)1/2 . (29)

We call β the adjustment parameter.

Recalculating the local expansions via β

Initially (6, 7) were given, with h1 6= h2 in general. Concomitantly to their
equalization, in order to write down the matrix (13), we must recalculate
the coefficients of the quadratic forms. Substituting in (27)

z = ±
√

1− x2 − y2 ∼ ±
(

1− x2 + y2)

2

)
,
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we get, after a short calculation, the local expansions of gβ

h(south) = β

(
1− β2 − 1

4
(x2 + y2)

)
(30)

h(north) =
1

β

(
1− β2 − 1

4β2
(x2 + y2)

)
.

Hence

Hnew
1 = β

[
h1 + (1/2) p1 x

2
1 + (1/2) q1y

2
1

] [
1− β2 − 1

4
(x2

1 + y2
1)

]
(31)

Hnew
2 =

1

β

[
h2 + (1/2) p2 x

2
2 + (1/2) q2y

2
2

] [
1− β2 − 1

4β2
(x2

2 + y2
2)

]
The new p′s and q′s follow by collecting terms. The end result is nice:

δnew1 := +1− 2 pnew1 /h = β2 (+1− 2 p1/h1) (= β2 δ1)

γnew1 := −1 + 2 qnew1 /h = β2 (−1 + 2 q1/h1) (= β2 γ1)

δnew2 := +1− 2 pnew2 /h = (1/β2) (+1− 2 p2/h2) (= δ2/β
2)

γnew2 := −1 + 2 qnew2 /h = (1/β2) (−1 + 2 q2/h2) (= γ2/β
2)

This concludes the proof of Lemma 1.

We now revisit some derivations from [7], for the case of surfaces with
antipodal symmetry.
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2.2 Surfaces with antipodal symmetry

In this case
p1 = p2 = p, q1 = q2 = q, (32)

and matrix A simplifies to

A =


0 γ 0 −1
δ 0 1 0
0 −1 0 γ
1 0 δ 0

 . (33)

where
γ = −1 + 2q/h , δ = +1− 2p/h . (34)

Matrix A has two invariant subspaces of dimension 2:

• V spanned by v1 = (1, 0,−1, 0), v2 = (0, 1, 0,−1). We have

Av1 = (δ − 1)v2 = −2
p

h
v2 , Av2 = (1 + γ)v1 = 2

q

h
v1 (35)

• W spanned by w1 = (1, 0, 1, 0), w2 = (0, 1, 0, 1) . We have

Aw1 = (δ + 1)w2 , Aw2 = (γ − 1)w1 (36)

The first subspace V is tangent to the center manifold (s1 = −s2) while W
is transverse to it.

Theorem 3. (Surfaces with antipodal symmetry [7])

On the subspace V = span{v1, v2}, the eigenvalues satisfy

λ2 = (δ − 1)(1 + γ) = −4pq/h2 . (37)

and on the subspace W = span{w1, w2}, the eigenvalues satisfy

λ2 = (γ − 1)(δ + 1) = −4(1− p/h)(1− q/h) . (38)
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Conclusions for surfaces with antipodal symmetry:

i) On the system restricted to the invariant submanifold Sant, if p, q have
the same (resp. opposite) sign, then one has a center (resp. saddle.) The
eigenvalues satisfy

λ2 + 4pq/h2 = 0.

ii) For the transverse subspace: if (1− p/h)(1− q/h) is positive (resp. neg-
ative) one has a center (resp. saddle). The eigenvalues satisfy

λ2 + 4(1− p/h)(1− q/h) = 0.

iii) The loxodromic case is ruled out.

Undefined situations occur when p or q are equal to 0 or to h.

Remark 1. When p = q the pair is always linearly stable, except for the
undefined situations above. Nonetheless, we will show that for embedded
spheroids in R3 then p/h ≤ 1/2, so the only undefined case is when p = 0.

Remark 2. Along the invariant submanifold Sant the result is consistent
with that one expects from quadratic hamiltonians in a two dimensional
phase space. In the transverse plane W spanned by w1, w2 both stable or
unstable behavior can also happen.
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3 Surfaces of revolution

Here we have
p1 = q1, p2 = q2. (39)

so the (interconnected) local expansions will be of the form

H1 = h1 +
p1

2
(x2

1 + y2
1)] , H2 = h2 +

p2

2
(x2

2 + y2
2)]. (40)

We will see in Proposition 6 how these coefficients can be related to the local
profiles at the poles, and just one global information, simplifying substan-
tially the work. When the surface is convex with

p1/h1 6= p2/h2

it is called an ovoid, like the Matryoshka dolls2. When p1/h = p2/h we
called it an spheroid.

3.1 Eigenvalues of the pair at the poles

Theorem 4. (Surfaces of revolution: the poles are always center-center)

Assume that the adjustments on the quadratic expansions at the poles were
done, so h1 = h2 = h. Let

γ1 = −δ1 = −1 + 2 p1/h , γ2 = −δ2 = −1 + 2 p2/h. (41)

The eigenvalues are ±iω+ , ±iω−, with frequencies

ω± =

[(
1 +

γ2
1 + γ2

2

2

)
±
(

(γ2
1 − γ2

2)2

4
+ (γ1 + γ2)2

)1/2
]1/2

(42)

The expression inside the [ ] is always non-negative.

NOTA BENE: degenerate situations may occur. The sphere is the simplest
example, where γ = −1, so one frequency is ω = 2 and the other vanishes.

2A Marylin Monroe Matryoshka should not be convex.
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Proof. Put γ1 = −δ1, γ2 = −δ2 in (21). The characteristic polynomial is

p = λ4 + 2ρλ2 + κ (43)

with

ρ = 1 +
γ2

1 + γ2
2

2
≥ 0 , κ = (1− γ1γ2)2 ≥ 0 .

We have
λ2 = −ρ±

√
ρ2 − κ , ρ ≥ 0. (44)

A short calculation gives the discriminant

∆rev = ρ2 − κ =
(γ2

1 − γ2
2)2

4
+ (γ1 + γ2)2 ≥ 0. (45)

so we see that λ2 is nonpositive for both signs in the right hand side of (44).

3.2 Example: the circular vortex billiard

The double faced unit disk is the limit of an oblate ellipsoid of revolution
when the minor axis shrinks to zero. One should not confuse vortex motion
in this boundaryless surface with the well known vortex motion inside a
planar circular domain.

In order to apply or methodology, we map this surface over the round
sphere. This is done via the inverses of the stereographic projections from
the north and south poles. In this way we “inflate” the double face unit disk
to the sphere S2. A point in the top side of the disk is sent to a point in
the northern hemisphere by a ray emanating from the south pole. Likewise,
a point in the bottom side of the disk is sent to a point in the southern
hemisphere by a ray emanating from the north pole.
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Let (r, θ), r ≤ 1, polar coordinates in the unit disk, and let (φ, θ) be
respectively the latitude (measured from the equator z = 0) and longitude
in the unit sphere in (X,Y, Z) space. It is readily seen

r =
cosφ

1 + | sinφ|
=

√
1− |Z|
1 + |Z|

, −π/2 ≤ φ ≤ π/2. (46)

The conformal factor from the planar (euclidian) metric to the sphere (round)
metric at a point (X,Y, Z) ∈ S2 is

h(X,Y, Z) =
1

1 + |Z|
(47)

It is maximum along the equator (with h = 1) and minimum at the poles
(with h = 1/2). If φ > 0, the corresponding vortex is in the down face of
the disk, and when φ < 0 it is in the up face. This loss of differentiability of
the double disk metric at the turning edge (the equator z = 0 of the sphere)
corresponds to the fact that the curvature is concentrated there.

Note the lack of differentiability when Z = 0. For simulations of (3) in
the representing S2 × S2, with

gradh =
−sign(Z)

(1 + |Z|)2
k̂, k̂ = (0, 0, 1),

it is useful to use a symplectic integrator. The event discontinuities at z = 0
can be handled with specialized ODEs codes [10], [11], [12]. It would be
interesting to have them adapted to symplectic integrators.

Expansion of h at the center of the disk

The centers of faces of the double disk correspond to Z = ±1.

Proposition 4. The expansion of the conformal factor h from the doubled
disk P : (r, θ) to the sphere S2 at the poles Z = ±1, corresponding the center
of the (doubled) disk, is given by

hD/S2(X,Y, Z) =
1

2
+

1

8
(X2 + Y 2) + ... (48)

Proof. From (9) then

h =
1

1 +
√

1− (X2 + Y 2)
=

1

1 + 1− (X2 + Y 2)/2
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where X,Y are moved from the plane Z = 0 to the tangent planes at the
poles Z = ±1. In the notation of (6),

h =
1

2
, p = q =

1

4
. (49)

We obtain without need to do further computations:

Proposition 5. The linearization of the vortex pair system of the double
edged unit disk at the pair located at x = y = 0, z = ±1 is of center-center
kind, with eigenvalues ±i both along the tangent space of the center manifold,
and in the transverse subspace. The frequencies are in 1:1 resonance.

Proof. We can either use Proposition 3 or Proposition 4. In the former,
we compute 4pq/h2 = 4(1 − p/h)(1 − q/h) = 1. In the latter, we see that
γ1 = γ2 = 0, so (41) yields again the quadruplet ±i,±i. Both ways coincide.

We will show in section 4.4 that the frequencies stay in 1:1 relation for all
elliptic vortex billiards.

Reduction of the S1 symmetry

We outline the reduction procedure. This seemingly peaceful problem be-
comes quite involved, actually. Using spherical coordinates as above with
longitude θ and latitude φ, measured from the equator, so z = sinφ,

h(φ) = 1/(1 + | sinφ|),

Ωpair =
cosφ1

1 + | sinφ1|
dφ1 ∧ dθ1 −

cosφ2

1 + | sinφ2|
dφ2 ∧ dθ2

and the Hamiltonian is H = − logF where

F = 2
1− cosφ1 cosφ2 cos(θ1 − θ2)− sinφ1 sinφ2

[(1 + | sinφ1|)(1 + | sinφ2|)]1/2
. (50)

The momentum map for the Hamiltonian action of S1 on (S2 × S2 , Ωpair)
(which is the translation along parallels in simultaneous fashion) is

J = m(φ1)−m(φ2) (51)

where

m(φ) =

{
+ log(1 + sinφ), 0 ≤ φ ≤ π/2
− log(1− sinφ), −π/2 ≤ φ < 0

. (52)
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Note that the maximum and minimum values of J occur when

J = ±2 log 2.

It corresponds to the vortices being at the center of the disk in opposite
faces. J = 0 corresponds to vortices having opposite (in general varying)
values of φ. To implement the reduction, one fixes the hypersurface θ2 ≡ 0,
so the reduced symplectic form is

Ωred =
cosφ1

1 + | sinφ1|
dφ1dθ1 .

The reduced Hamiltonian is Hred = − logFred where

Fred = Fred(φ1, θ1; J)

is obtained replacing sinφ2 and cosφ2 in (50) by solving for φ2 (see (51)) ,

m(φ2) = m(φ1)− J.

Due to the switching in (52) at φ = 0, two cases occur: either the vortices
on the same or opposite faces. At the transition at least one of the vortices,
say s1, is at the rim. The product s1 × k̂ is tangent to the equator at s1.

So if there is a switching, the velocity ṡ1 gets an instantaneous push
along the rim. Let us look at the other contribution to ṡ1, coming from the
term with s1× s2. We can take without loss of generality, s1 = (1, 0, 0), and
an arbitrary s2 = (x2, y2, z2). This other contribution is y2k̂ − z2ĵ. Hence,
depending on the sign of y2, vortex s1 will move either to the upper or lower
hemispheres, irrespective of whichever of the hemispheres s2.

We stop the study here with this task: depict the level curves

Hred(φ1, θ1; J) = h = const

in the allowed region (φ1, θ1) inside S2, for various choices of J , in order
to obtain a qualitative understanding. Quantitatively, one finds the time
dependence θ1(t), φ1(t) on the motion of the first vortex by solving

cosφ1

1 + sinφ1
φ̇1 = −∂Hred/∂θ1 ,

cosφ1

1 + sinφ1
θ̇1 = ∂Hred/∂φ1

Reconstructing the motion of the second vortex comes from substituting
φ1(t) in (51) to obtain φ2(t) and a quadrature of the ODE for θ̇2 after
inserting φ1(t), θ1(t), φ2(t). Clearly, this is easier to say than to do.

ADRIANO: NUMERICAL EXPERIMENTS?
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3.3 Conformal expansion at the poles

In this section we present a rather simple method to compute the quadratic
expansions H of the conformal factors at the poles. It depends only on the
local profiles of the surface of revolutions and just a single integral along the
meridian. This allows to readily compute the frequencies.

We visualize the surface of revolution Σ sitting vertically over the (physical)
x, y plane P with the south pole at the origin. We assume that the profile
of the surface at one each of the poles is quadratic. Say, at the south pole,
the meridian y = 0 is

z =
1

2α
x2 + · · · (53)

We will also consider another plane Π with polar coordinates r, θ superposed
over P , where r accounts for stretchings/compressions along the meridians
θ = const. so that the map Σ→ Π is conformal. Our task is to relate the arc
length s ∈ [0, L] along the meridian with the radial coordinate r on Π. For
this purpose, it is convenient to describe the profile of the meridian y = 0
of Σ by a function x = x(s), such that

x(0) = x(L) = 0, and x(s) > 0, |dx/ds| ≤ 1, s ∈ (0, L) (a).

We do not require x(s) to have just one critical value, the surface does not
need to be convex. The other coordinate z(s) of the meridian can be recov-
ered from the arc length condition (dx/ds)2 + (dz/ds)2 = 1.

We assume that the surface is smooth at the poles, and (53) is equivalent to

(dx/ds)2 = 1 for s = 0 and s = L (b).

Then for small x for which x(s) is monotone, (53) yields

s(x) =

∫ x

0

√
1 + (dz/dx)2 dx ∼ x+

1

6α2
x3 + · · · (54)

Gauss already called the attention that a conformal map to the plane obeys
a very nice separable ODE

ds

x(s)
=
dr

r
(with ds/dr = x/r = h) (55)
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Local conformal map: an indeterminate ρ combines with α

Recall, we are assuming that the profile of the surface Σ in x, y, z space at
one of the poles, say, the south pole, is of the form z = (1/2α)x2 + · · · so
that for small x

s(x) =

∫ x

0

√
1 + (dy/dx)2 dx ∼ x+

1

6α2
x3 + · · ·

Lemma 2.
r(x) = ρ x

(
1 + x2/4α2 +O(x4)

)
. (56)

(the undetermined ρ corresponds to homotheties in the plane.)

Proof. Insert (56) in the ODE (55). The left hand side of

ds/dr = x/r (= hΣ/Π)

gives

hΣ/Π =
ds

dr
=
ds/dx

dr/dx
=

1 + x2/2α2

ρ(1 + 3x2/4α2)
=

1

ρ
(1− x2/4α2) .

The right hand side is

hΣ/Π =
x

r
∼ 1

ρ(1 + x2/4α2)
∼ 1

ρ
(1− x2/4α2). (57)

We summarize:

Proposition 6. Let
z = (1/2α)x2 + · · · (58)

be the profile of a surface of revolution at one of the poles.

The conformal factor of Σ→ Π at that pole expands as

hΣ/Π =
1

ρ
(1− r2

4 ρ2 α2
+ · · · ) (59)

where r is the radial parameter in the plane Π. It is related to x (or s) via

r(x) = ρ x
(
1 + x2/4α2 +O(x4)

)
= ρ s

(
1 + s2/4α2 +O(s4)

)
s(x) = x+ x3/6α2 +O(x5). (60)
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Proposition 7. The conformal factor of the map Σ→ S2 from the surface
Σ to the unit sphere X2 + Y 2 + Z2 = 1 expands at the corresponding pole
(Z = ±1) as

hΣ/S2 = h

[
1 +

1

4
(1− h2

α2
)(X2 + Y 2)

]
, h =

1

2ρ
(61)

where X,Y are transported to the tangent plane of S2 at the pole.

Important: the choice of ρ on one pole determines forcibly the value of the
corresponding at the other pole.

Proofs. For the plane we insert x ∼ r/ρ from (56) in (57). For the sphere,
we may fix the meridian θ = 0. We need to multiply the conformal factor

1

ρ

(
1− r2

4ρ2α2

)
from the surface to the plane Π by the conformal factor

1

2
+

1

8
X2

from the plane Π to the sphere given in (48). For this, we need to relate r
with X. We claim that to first order

r ∼ X/2,

so the result for the sphere will follow by this substitution and the above
mentioned multiplication. This claim that r ∼ X/2 is proved now.

Lemma 3. The point in the equatorial plane Π with radial coordinate r
corresponds to the point (X, 0, Z) ∈ S2 via the stereographic projection from
the north pole, with Z near -1, satisfies r ∼ X/2. ( Moreover around Z = −1
the infinitesimal ratio of areas from the projection in the equatorial plane to
the corresponding spherical region is 1/4, hence the factor h = 1/2 ).

Proof. The stereographic projection from the north pole (0, 0, 1) to the
equatorial plane is given by

r2 =
1 + Z

1− Z
For X << 1, then near the south pole,

Z = −
√

1−X2 ∼ −1 +
X2

2
.
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Hence

r2 ∼ 1 + (−1 +X2/2)

1 + 1−X2/2
∼ X2/4 for |X| << 1.

Also using spherical coordinates, Z = sinφ, then

r2 =
1 + sinφ

1− sinφ
⇒ rdr =

cosφ

(1− sinφ)2
dφ ,

AΠ

AS2

=
r dr

cosφdφ
=

1

(1− sinφ)2

(62)
which gives 1/4 when φ = −π/2.

Spheroids. Here p1 = p2 = q1 = q2(= p) and there will be just one
parameter in matrix (13), namely γ = −1+2 p/h. From (42), the frequencies
are

ω± = |1± γ| =
{

2|p|/h (relative to invariant submanifold)
2|1− p/h| (transverse subspace)

(63)

Moreover, the local expansion above (see (61)) gives

γ = −h
2

α2
≤ 0 , h =

1

2ρ

2(1− p/h) = 1 +
h2

α2
≥ 1.

where α comes from the local profile, but ρ is still unknown, and needs to
be determined from global considerations. A simple procedure for this will
be presented in the next section.

It is important to notice that an indefinite case occurs in the invariant
subspace, when γ = −1, i.e, when

2 ρα = 1. (64)

Ellipsoids of revolution (preview)

E(1, 1, c) : x2 + y2 + z2/c2 = 1 .

The profile meridian of a for small |x| is z = c
√

1− x2 ∼ c (1−x2/2), hence
the parameter α in z ∼ x2/(2α) is

α = 1/c . (65)
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For the sphere, c = 1, so α = 1. Moreover, in view of (61), the value of ρ
must be

ρ =
1

2
,

since the conformal factor is constant. This is coherent with γ = −1, p = 0.
Note that formula (61) gives h ≡ 1/4, instead of 1/2. This is merely an
inocous artifact, coming from the fact that the original sphere is on top of
plane P while the representative unit sphere has its equator in the plane Π,
justifying this extra 1/2 factor.

For c = 1/α 6= 1, we need to compute ρ = ρ(c) in order to get the parameter
γ = γ(c) explicitly. We will do it in section 4.2. We expect that when
α→∞ (i.e, c = 0, the double faced disk), we will still get ρα→∞, so that
p/h→ 1/4 as we saw in (48).

Global conformal maps

Let us now explore more fully the EDO (55), governing the conformal map
from the surface to the plane sending meridians to rays.

ds

x(s)
=
dr

r
(with ds/dr = x/r = h)

Likewise, conformality of the surface Σ to a sphere S preserving meridians
means in spherical coordinates that

ds2 + x(s)2 dθ2 = h2(s)
(
dφ2 + cos2 φdθ2

)
so that a separable ODE relating s and φ results,

ds

x(s)
=

dφ

cosφ
(with ds/dφ = h) . (66)

Proposition 8.

i) Let the parallel corresponding to a value so map over the circle of radius
ro in the plane. Then we have from (55)

r(s) = ro exp

(∫ s

so

ds

x(s)

)
, s ∈ [0, L]. (67)

ii) We have r = 0 at the south pole and r =∞ at the north pole. Moreover,
r = r(s) monotone in s ∈ [0, L].

23



iii) Take the unit sphere with its equator on plane Π. If the parallel s = so
in the surface is made to correspond to the parallel φ = φo in the sphere,
then

secφ+ tanφ = κ exp

(∫ s

so

ds

x(s)

)
, κ = secφo + tanφo . (68)

iv) The left hand side r = secφ+tanφ in (68) is the stereographic projection
from the north pole of the sphere to the equatorial plane.

Proof. Our assumptions (a) and (b) imply logarithmical divergence of the
improper integral at s = 0 and s = L. Indeed, at these points x(s) ∼ s. In
fact, near the poles we can write

ds

x
=

√
1 + (dz/dx)2 dx

x
=
dx

x
+

√
1 + (dz/dx)2 − 1

x
dx.

The first integrand takes care of the logarithmic divergences. The second
term, that we call m(x), can be rationalized:

m(x) =

√
1 + (dz/dx)2 − 1

x
=

=
(
√

1 + (dz/dx)2 − 1)(
√

1 + (dz/dx)2 + 1)

x(
√

1 + (dz/dx)2 + 1)
=

=
(dz/dx)2/x√

1 + (dz/dx)2 + 1

(69)

Now we assumed that the surface is smooth at the poles, meaning that at
s = 0 and s = L, where x = 0, we have z = O(x2). Thus (dz/dx)2/x = O(x).

For the proof of iii) and iv) is obvious, just recall the stereographic
projection formula

r =
cosφ

1− sinφ
=

1 + sinφ

cosφ
= secφ+ tanφ.

Let us assume in addition to (a), (b) in section 3.3 that x(s) increases from
x = 0 in the south pole to a maximum parallel with radius x(c), for s ∈ [0, c)
and then decreases to 0 at the north pole for s ∈ (c, L]. We do not require,
however, the surface to be convex. It can ‘wiggle’ in the z-direction.
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This assumption is just for clarity. If the surface wiggles in the x-direction,
it will become clear from the computations below that more switches in (71)
would be done, at the end of each monotone interval.

In order to add some more flexibility, we use any parameter t ∈ [a, b], with
t = a corresponding to the south pole, t = b to the north pole, and t = to
corresponding to s = c. The circle with radius ro = 1 in the target plane Π,
will correspond to the parallel t = to in the surface Σ, with radius xo = x(to):

r(t) = ro exp

(∫ t

to

√
ẋ2 + ż2

x(t)
dt

)

This function r(t) is increasing, with r(a) = 0 , r(b) = ∞. We split the
integrand into two parts as

√
ẋ2 + ż2

x
=
|ẋ|
x

+

(√
ẋ2 + ż2 − |ẋ|

x

)
.

We change variables in (69), now denoting the second term by m(t).

m(t) =

√
ẋ2 + ż2 − |ẋ|

x
( =

ż2/x√
ẋ2 + ż2 + |ẋ|

) ≥ 0 (70)

Note that ẋ > 0 in (a, to) and it is < 0 in (to, b) and this reflects in the
combination of exp and log integration of the first term. The result is

Proposition 9. (Conformal map to the plane)

r(t) =


x(t)

xo
A(t) , a ≤ t ≤ to

xo
x(t)

B(t) , to ≤ t < b .

(71)

A(t) = exp

(
−
∫ to

t
m(t) dt

)
, B(t) = exp

(∫ t

to

m(t) dt

)
(72)

A(t) increases from Ao to 1 in [a, to] ; B(t) increases from 1 to Bo in [to, b].
Since A(to) = B(to) = 1 then ro = 1.
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Theorem 5. (Conformal expansion at the poles)

i) When the parallel corresponding to t = to is sent to the equator of S2 then

hΣ/S2(south) =
xo

2Ao
, hΣ/S2(north) =

xoBo
2

where

Ao = A(a) = exp

(
−
∫ to

a
m(t) dt

)
< 1 , Bo = B(b) = exp

(∫ b

to

m(t) dt

)
> 1

ii) The adjustment β is

β2 = hΣ/S2(N)/hΣ/S2(S) = BoAo = exp

[∫ b

to

m(t)dt−
∫ to

a
m(t)dt

]
iii) The adjusted quadratic expansions of the conformal factors at the poles
have coefficients (see Proposition 4)

γS = (−1 + 2 pS/h) = − h
2

α2
S

,

γN = (−1 + 2 pN/h ) = − h2

α2
N

(73)

h2 =
x2
o

4
eM , M =

∫ b

a
m(t)dt

Proof. i) Near the poles,

r ∼ A

xo
· x (south), r ∼ Bxo

x
(north) .

The conformal factor from the surface to the plane is hΣ/Π = x(t)/r(t) , so

hΣ/Π(south) = ρsouth =
xo
A

, hΣ/Π(north) = ρnorth ∼
xoB

r2
.

We then compose with the inverse of the stereographic projection of the unit
sphere X2 +Y 2 +Z2 = 1 to its equatorial plane Z = 0, from the north pole.
Along Y ≡ 0 this map is given by

|X| = 2r

1 + r2
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so the conformal factor from the plane to the sphere is

hΠ/S2 =
r

|X|
=

1 + r2

2
.

Just multiply, and compute at r = 0 and r =∞.

ii) We apply Lemma 1: β2 = hΣ/S2(north)/hΣ/S2(south).

iii) B/A gives the exp of the total integral.

Summary: the procedure to obtain the frequencies

• From the surface equation, find the coefficients αsouth, αnorth of the
local profiles z ∼ x2/2α.

• Find the belt size xo.

• Compute M =
∫ b
a m(t)dt and exponentiate.

• Insert in (73)

• Apply Proposition 4, using (42) to compute the frequencies.

A nice feature is that this bypasses computing the adjustment parameter β.
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4 Examples

4.1 Matryoshkas

Our idealized matryoshka has two parameters b and θ, with 0 < θ < π/2.
The largest cap is the south, and without loss of generality we may assume
its radius a = 1; the north cap has radius b < 1. Here θ is the angle between
the generating line of the conical part and the axis of symmetry.

The meridian profile is formed by three parts. In the first, take the arc
−π/2 ≤ t ≤ θ in the circle (cos t, sin t), starting in the south pole S = (0,−a)
with t = −π/2, to the point P = (cos θ, sin θ) corresponding to t = θ.
The transition from ẋ > 0 to ẋ < 0 ocurs at to = 0, at the intermediate
point I = (1, 0). The second stretch is a segment of length ` = (1− b) cot θ.
The third is the north cap, with opening π/2− θ from the vertical. We add
the possibility of b = 1, ` arbitrary, where the surface becomes a spheroid.

We simply ignore the issue that the profile is only C1.

Let us compute the integral M = M(b, θ). It will have three pieces
(x(t), z(t)) for the integrand (

√
ẋ2 + ż2 − |ẋ|)/x

i) (cos t, sin t), t ∈ [−π/2, θ]

ii) (cos θ, sin θ) + t `, ` = (1− b) cot θ(− sin θ, cos θ) , t ∈ [0, 1]

iii) (b cos t, b sin t), t ∈ [θ, π/2] + vert
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The vertical translation in the third piece is irrelevant. The corresponding
integrands are

•
1− | sin t|

cos t
, t ∈ [−π/2, θ]

•
(1− b) 1− sin θ

sin θ

1

(1− t(1− b))
, t ∈ [0, 1]

•
1− | sin t|

cos t
, t ∈ [−π/2 + θ, π/2− θ]

Interestingly, the parameter b appears both numerator and denominator of
the third integrand, so their integrals merge into the same,∫ π/2

−π/2

1− sin |t|
cos t

dt = 2

∫ π/2

0

1− sin t

cos t
dt = 2

∫ π/2

0

cos t

1 + sin t
= 2 log 2

The integral in the middle∫ 1

0

1

(1− t(1− b))
dt =

− log b

1− b

so

M = 2 log 2− log b
1− sin θ

sin θ
, h2 = b(1−sin θ)/ sin θ < 1

Now, the profile coefficients are

αS = 1 , αN = b

Proposition 10.

i) The coefficients in (42) to compute the Matryoshka frequencies are

γS = −b(1−sin θ)/ sin θ , γN = −b
(1−sin θ)/ sin θ

b2
(74)

ii) One of the Maryoshka frequencies vanishes when θ = π/6, independently
of the parameter b.

iii) We also add the exceptional case b = 1, ` arbitrary, where formally
γS = γN = 1 .
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Proof. Apply (73) with

αS = 1 , αN = b.

An interesting case is when a pair of eigenvalues vanishes; we saw that this
happens when γSγN = 1. Applying (74) we must have

(1− sin θ)/ sin θ = 1.

Remark 3. One can use this methodology for smooth oval profiles of one’s
preference. However, we think that the Matryoshka example captures the
phenomenon that we were looking for, exceptional cases where one of the
eigenvalue pairs vanish3.

4.2 Ellipsoid of revolution

For the ellipsoid x2 + y2 + z2/c2 = 1, the profiles are z ∼ x2/2α+ · · · so

αS,N = 1/c

(see (65)) and the width is xo = 1. With the usual parametrization

x = cos t, z = c sin t, t ∈ [−π/2, π/2],

the procedure gives

γN = γS = γ(c) = −c
4

4
exp

(
2

∫ π/2

0

cos t√
sin2 t+ c2 cos2 t+ sin t

)
(75)

which we may insert in (63).

Although the integral can be obtained by elementary methods, the end
result split in the two cases c >< 1, and the formulas are a bit cumbersome.

3The reader can amuse himself or herself by looking at these web pages:
https://mathcurve.com/surfaces.gb/ovoid/ovoid.shtml

http://www.mathematische-basteleien.de/eggcurves.htm

http://nyjp07.com/index_egg_E.html

https://en.wikipedia.org/wiki/Cassini_oval

https://en.wikipedia.org/wiki/Matryoshka_doll

https://www.faberge.com/the-world-of-faberge/the-imperial-eggs
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Proposition 11. The graph of the ratio of the two frequencies

f(c) =

∣∣∣∣1 + γ(c)

1− γ(c)

∣∣∣∣ , c > 0.

is DESCRIBE + FIGURE. Here the numerator is the frequency in the in-
variant submanifold space, and the denominator the frequency in the trans-
verse space.

Note as a check that for c = 1 (sphere), the integral gives ln 2, so γ = −1 as
we already know. For c → 0, it is readily seen that γ → 0, so the ratio of
frequencies is 1, as we also have seen. Moreover, for c → ∞, γ → ∞, and
the ratio of frequencies also tends to 1.

Adriano, poderia fazer esse grafico? pode integrar numericamente, var-
iando c =0.1 ate’ digamos c = 5.
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4.3 Mr. Bean surfaces

The “bean” family of surfaces of revolution was considered in [15]. The
meridian is given by

z =
1

2
b cos2 φ+ c sinφ , x = cosφ , φ ∈ [−π/2, π/2]. (76)

The surface develops a depression in the north pole when b > c, but this
does not matter for us: the x-coordinate has only one maximum xo = 1.

For b = 0 the family reduces to the ellipsoids of revolution E(1, 1, c) that
we just considered.

Eliminating φ, the meridian profile is

z = (b/2)x2 ± c
√

1− x2 (77)

where the bottom sign is for the southern region φ ∈ [0,−π/2], the upper
sign for the northern region φ ∈ [0, π/2]. At the poles the local profile is

z ∼ ±c+ (
b

2
∓ c

2
)x2

so we get immediately

αS =
1

b+ c
(78)

αN =
1

|b− c|
(79)

The required definite integral is

M = M(b, c) =

∫ π/2

−π/2
m(t) dt

with

m(t) =
cosφ (b sinφ− c)2√

cos2 φ (b sinφ− c)2 + sin2 φ+ | sinφ|
Note that M(b, c) is an incomplete elliptic integral, computable in closed
form.
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Since the belt radius is xo = 1 we have

Proposition 12. (Mr. Bean surfaces) For the surfaces given by (76)

γS = −1

4
(b+ c)2 eM(b,c) , γN = −1

4
(b− c)2 eM(b,c)

Since x(φ) has only one maximum (does not matter that Mr. Bean
is not convex), we can use formula (73) in Proposition 9. We use (42) in
Proposition 4 to compute the frequencies. The ratio ω−/ω+ is depicted in
figure FAZER E REFERENCIAR.

ADRIANO: de novo, poderia graficar a razao? aqui voce usa a formula para
as frequencias dadas por (42). Sugiro escolher um valor de b e variar c e/ou
vice versa. Produzir figura e tabela de valores...
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4.4 The elliptic vortex billiard

In 1869 H.A. Schwarz gave the conformal map from the unit disk D in the
complex plane ω to the interior of an ellipse R = Rr in the ξ-plane ([16],
[17]; see also [18], [19]):

ω 7→ ξ = sin

[
π

2K(r)
F (

ω√
r

; r)

]
where F is the incomplete elliptic integral of the first kind

F (w; r) =

∫ ω

0

dt√
(1− t2)(1− r2 t2)

.

Let τ = τ(r) be defined via the “master equation’

K
(√

1− r2
)

K(r)
=

4τ

π
, r ∈ (0, 1), τ ∈ (0,∞)

where K(r) = F (1, r) is the complete (real) elliptic integral.

We can use either r ∈ (0, 1) or τ ∈ (0,∞) to define the ellipse parameters:
the ellipse semiaxis are

c = cosh τ > b = sinh τ

so the foci are at ±1 in the ξ-plane. As r → 1 the numerator in the master
equation becomes K(0) = π/2 and the denominator K(1) = ∞, so τ → 0
(the segment). As r → 0, then τ →∞ (a very large disk).

We proceed as before, in the example of the circular vortex billiard. The
south pole of the unit sphere in the (X,Y, Z) space is sent to the origin of
ω-plane by stereographic projection to the equatorial plane from (0, 0, 1).

We denote by h(X,Y, Z) the conformal factor of the composition

s = (X,Y, Z)
stereographic−→ ω (disk)

Schwarz−→ ξ(ellipse).

The reader should bare with us the following calculations. First, we
expand the integrand of the incomplete F (·, r)

1/
√

(1− t2)(1− r2 t2) ∼ 1 +
1

2
(1 + r2)t2
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Hence

F (
w√
r

; r) ∼ w√
r

+
1

6
(1 + r2)

w3

r
√
r

(80)

Denote for short, K = K(r). Inserting in the sine series we get up to
third order,

ξ =
π

2K

[
w√
r

+
1

6
(1 + r2)

w3

r
√
r

]
− 1

6

( π

2K

)3 w3

r
√
r

Collecting the cubic terms, we get the local expansion

ξ =
π

2K(r)
√
r

(
w +

1

3
Mw3

)
+ · · · (81)

where

M = M(r) =
1

2r

(
1 + r2 − π2/4

K2(r)

)
. (82)

Lemma 4. M(r) increases from 0 to 1 in the interval 0 ≤ r ≤ 1.

Proof. Since K(0) = π/2, in the limit r → 0 (circle) we get M → 0. Like-
wise, in the limit r → 1, we get M → 1.

See the table below for intermediate values.
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We now compute the conformal factor. We have

h2
Rr/D

=
dξ

dw
· dξ
dw
∼
(
π/2

K
√
r

)2 [
1 +M(w2 + w2)

]
Write

D : w = u+ iv , u2 + v2 ≤ 1.

Then

h2
Rr/D

∼
(
π/2

K
√
r

)2 [
1 +M(w2 + w2)

]
=

(
π/2

K
√
r

)2 [
1 + 2M(u2 − v2)

]
Therefore

hRr/S2 =
π

2K
√
r

[
1 +M(u2 − v2)

]
· 1

2

(
1 +

1

4
(X2 + Y 2)

)
Near the south pole (0, 0,−1), we have as before u ∼ X/2 , v ∼ Y/2 so that

hRτ/S2 =
π

2K
√
r

[
1 +

M

4
(X2 − Y 2)

]
· 1

2

(
1 +

1

4
(X2 + Y 2)

)
Collecting terms we are lead to

Proposition 13.

i) The conformal map from the double faced ellipse to the unit sphere expands
at the poles (corresponding to the center of the faces) as

hRτ/S2 =
π

4K
√
r

[
1 +

p′

2
X2 +

q′

2
Y 2

]
. (83)

p′ =
1 +M

2
, q′ =

1−M
2

(84)

M =
1

2r

(
1 + r2 − π2/4

K2(r)

)
(85)

ii) Therefore we have always the center-center case with equal frequencies

ω1 = ω2 =
√

1−M2

(when r → 0 (circle), M = 0, p′ = q′ = 1/2, and in the limit r → 1, M = 1
so p′ = 1, q′ = 0. )

Proof.
4p′q′ = 4(1− p′)(1− q′) = 1−M2. (86)
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5 Conclusion

In this work we continued our previous paper [7], presenting here the general
linear analysis of an equilibrium pair, based on the quadratic expansions of
the conformal factor h. We provided some more examples for surfaces with
antipodal symmetries and for surfaces of revolution. We end with some
questions, hoping to attract interest to the theme.

i) In the characteristic polynomial of the main Theorem, can all (ρ, κ) be
attained when the parameters vary? If not, what is the range?

ii) Nonlinear analysis of equilibria via Hamiltonian normal form methods,
from higher order expansions of h.

iii) Inverse shape problems (the objectives must be thought about).

iv) Study of systems of more than two vortices, with total vorticity arbi-
trary. In particular the stability of vortex rings.

v) Immersion/embedding of genus zero Riemann surfaces (Σ, g) in R3,
with prescribed conditions on the conformal factor at a pair of points.

Let us briefly comment on items i) and v).

There are five parameters p1/h, q1/h, p2/h, q2/h, θ, There are no restrictions
on them since Morse functions h(s) on the sphere can be constructed with
arbitrary quadratic expansions at two chosen critical points. Classifying all
the eigenvalue cases is in order. In particular we would like to have a con-
crete surface in R3 with a loxodromic equilibrium.

Gromov showed that (Σ, h2go) can be isometrically embedded in R5 (see
[20], p. 298)4. It is to be expected that p/h is not arbitrary in a “physical’
surface of revolution. For surfaces in R3, the arc length along a meridian
starting at a pole satisfies s > x(s), for s > 0. An abstract S1 equivariant
metric in S2 can violate this condition. Consider the family of metrics on
the sphere with coordinates (φ, θ) given by ds2 = α2 dφ2 + cos2 φdθ2 with
0 < α < 1. Then along the meridians s = αφ < φ. This is a simple example,
but already illustrates the depth of Gromov C∞ embedding results. Does
the added request about the quadratic expansions matter?

4See also the discussion in
https://mathoverflow.net/questions/37708/nash-embedding-theorem-for-2d-manifolds
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Project:

The vortex pair on Bolza’s surface:
an experimental investigation

“In mathematics and in life it is not okay to give up on a problem
or a cause just because the struggle is difficult.”

(Chandler Davis)1
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1 Introduction

We discuss some of the numerical challenges for the study the vortex pair
system on a compact surface

z ∈ X = H/G,

where Γ ⊂ PSL2(R) is a cocompact Fuchsian subgroup acting on the upper
half plane H, via Moebius transformations. As X is compact, Γ does not
have elliptic or parabolic elements. We also use the Poincaré disk w ∈ D,
for which the hyperbolic metric is 2/(1− |w|2)|dw| .

Bolza’s2 is a Riemann surface for which many results are known. It will be
the object of the experimental investigation.

We want to produce pictures and quantitative results. But of what kind?
What would be the purpose? What theoretical questions could emerge from
the investigation?

2 A vortex pair system is never chaotic

Recall Anosov’s famous result: on a compact manifold of constant negative
curvature the geodesic flow is chaotic 3. Anosov flows are not only mixing,
but even Bernoullian4. Poincaré section never show KAM tori5.

This is not what happens for the vortex pair system, for a very simple reason.
Denote GX the Green function and R(z) = limw→z GX(w, z)−log dhyp(w , z )
the Robin function. The rescaled Hamiltonian

F (x1, y1;x2, y2) =
expGX(z1, z2)√

expR(z1)
√

expR(z2)
(1)

is symmetric in z1, z2 and F ∼ dhyp near the diagonal.

2https://en.wikipedia.org/wiki/Bolza_surface
3D. V. Anosov, Proc. Steklov Math. Inst. 90, 1 (1967)
4Ornstein, D., Weiss, B. Geodesic flows are Bernoullian. Israel J. Math. 14, 184–198

(1973) https://doi.org/10.1007/BF02762673
5A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR, 98, 527 (1954); V. I. Arnold, Soviet

Math. Dokl., 2, 501 (1961); J. Moser, Nachr. Akad. Wiss. Götingen, Math. Phys. K1,
p.1 (1962)
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Since X is compact,
maxF = M <∞ (2)

(the hydrodynamical diameter). Even without special discrete symmetries,
critical points appear on a pair of pairs, (z∗1 , z

∗
2) and (z∗2 , z

∗
1).

For energy levels a lit bit smaller that M , KAM behavior is expected to be
observed, as the equilibrium point (z∗1 , z

∗
2) is of elliptic type. The vortex

pair symplectic form is the difference of the pullbacks of the area form

Ωpair = π∗1ω − π∗2ω , ω = 4dx ∧ dy/(1− |z|2)2 , z ∈ D (3)

It is trivial to adapt a symplectic integrator.

3 Theoretical questions.

A good many theoretical questions could be asked to go in pair with the
experimental investigation. Here’s a just a few.

1. Can the hydrodynamical diameter M be estimated? Is it related to
the spectrum? Or the length spectrum?

2. What can be discovered about the location of this pair (z∗1 , z
∗
2) in the

fundamental domain FX? How does the pair changes as the metric
varies in the fixed conformal class of (x, go)? How about moving along
the Teichmüller space?

3. The two frequencies of the linearization around these (z∗1 , z
∗
2) that gives

F = M encode some geometrical information? Can one get normal
forms? Do resonances appear in special values of the 3g − 3, g ≥ 2
complex parameters as one changes the complex structure?

4. How about the other equilibrium points? How many and the corre-
sponding indices? (numerical study is in order).

5. Is F a Morse function in X ×X− diagonal for the constant curvature
metric? Is it generically Morse when a conformal factor is introduced,
as it was shown for genus zero6 ?

6https://link.springer.com/article/10.1007/s00220-021-04044-8,
https://link.springer.com/article/10.1007/s00205-018-1300-y
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6. F vanishes on the diagonal. The relative cohomology of H∗(X ×
X/diagonal) can be easily determined. What does this topological
information entails about the number an type of equilibrium points?

7. For F = 0 the system is the geodesic flow in the unit tangent bundle.
Continuation of closed geodesics to periodic solutions in F = c for
small values of c > 0.

8. Can symplectic geometry tools like SFT be employed in this setting?

4 Constructing Poincaré sections

Fixed some z∗ ∈ H, all the calculations should done inside the Dirichlet
fundamental domain FX,z∗ centered around z∗, which is defined as

FX,z∗ :=
{
w ∈ H | dhyp(z ∗,w) < dhyp(z ∗, γw), for all γ ∈ Γ\{id}

}
(4)

Usually one takes z∗ = i in the H representation and z∗ = 0 in the D repre-
sentation, and omit the label z∗, so it will be denoted FX .

When the fundamental domain is crossed, bringing the points back should
not bring excessive numerical error. It would be important to have a nice
way to visualize on a convenient model. Determining/estimating the sources
of error for long time integration is a challenge to the numerical analyst.
We hope that the hard work to produce Poincaré sections would be worth-
while.This effort obiter dictum could produce some new insights on Green,
and Batman functions.

At the level F = 0 the vortex pair system becomes the geodesic system
in the unit tangent bundle U(X). Therefore Poincaré sections will exhibit
total chaotic behavior.

On the other extreme, F = M , for a level c slightly less than M one should
observe typical KAM behavior near an elliptic equilibrium - when the fre-
quencies have resonances there is a pletora of possibilities.

Surfaces of section at intermediate values should exhibit a complicated mix
of both chaos and invariant curves. For intermediate values, what insights
could Poincaré sections provide us ?
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The values of Green and Robin functions would be computed (and stored)
for a representative number of points in the fundamental domain FX . Can
Delaunay triangulations be helpful?7

Numerical differentiation could be done using the tabulated values of G and
R, but ideally one would like to devise a direct computational method for
partial derivatives up to a desired order (see section 6 below).

5 Robin function of Bolza’s surface (C. Ragazzo)

The reference is the paper by C. Ragazzo on Robin’s function for Bolza’s
surface8. Here’s a short account (by himself). In principle, for any surface
X, its Green function GX can be obtained integrating the heat kernel of X
for t ∈ (0,∞). Two standard representations exist9.

In the first, one starts with the well known formula for the heat kernel of
the universal cover H. To produce the heat kernel on X, one takes all the
replicas of the Dirac delta an initial condition.

For short times this representation provides good service, because as the
solution originating from each delta decays in space like a Gaussian, so a
small number of deltas is sufficient to describe well the heat kernel restricted
to a fundamental domain of the surface.

However, as time goes on the Gaussians start to widen in space and the
number of Gaussians to be used in the description becomes prohibitive.

So one uses the second representation which is the spectral one summing
exp(−λit) times the products φi(z)φ(w) of L2 normalized eigenfunctions.

This is good for long times, since the time decay in each mode is exponential,
with rate equal to the Laplacian’s eigenvalue. In the end of the day, just a
few modes are enough to approximate the the heat kernel.

7https://hal.inria.fr/hal-01568002
8https://royalsocietypublishing.org/doi/10.1098/rspa.2017.0447
9See eg. Jorgenson, J., Kramer, J. (2006). Bounds on canonical Green’s functions.

Compositio Mathematica, 142(3), 679-700 doi:10.1112/S0010437X06001990.
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The difficulty is how to paste the two representations for intermediate times.
It was necessary to invent several numerical tricks.

For the Robin function these tricks avoid calculating the eigenfunctions, only
the eigenvalues are needed.

Clodoaldo: explain this? What are the locations/values of F at equilibria?
Compare with Anil’s estimates: we know rX and λ1 for Bolza’s.

For Bolza’s surface, the eigenvalues ≤ 1000 are available from Alexander
Strohmaier’s web page, with high precision10.

The picture below is from C. Ragazzo:

Robin function for Bolza’s surface.
Check the Euler characteristic with the indices of the equilibria.

For their location (and much more informations) see C. Ragazzo’s paper.

10http://www1.maths.leeds.ac.uk/~pmtast/publications/eigdata/datafile.html
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6 Bolza’s Green function and its derivatives.

How much more difficult would it be to numerically calculate the Green
function as compared with Robin’s? For one thing, the domain has now two
slots, but to store values to the square is not a big deal.

The logarithmic divergence on the diagonal should not be much of a prob-
lem; to study the dynamics outside a neighborhood of the diagonal, we
would compute and store the values of G on a compact subset of X × X
such that z1, z2 have hyperbolic distance dhyp(·, ·) greater of equal than a
conveniently chosen small value.

The basic ideia would be the same as for Robin’s function: for short times
we start with the heat kernel in H as before; for long times it seems that
there will be no escape from using eigenfunctions, but still only a few may
be required, for the same reason, the exponential decay in time.

The same procedures could be done for the partial derivatives (gradient,
hessians, and so on). Derivation increases the decay in the covering space
which helps in the sum of the group replicas. Experts should be consulted
for codes (or “home delivery”) of the required quantity of eigenfunctions.

The first eigenspace of Bolza’s has dimension 3. Source: wikipedia

The appendices present a poor’s man approach to numerically compute the
eigenfunctions of Bolza’s surface.

Clodoaldo: do you have references ot people to ask for files containing the
eigenfunctions tabulated data?
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7 Weierstrass points (see Ragazzo’s paper)

In what follows S a closed Riemann surface of genus g ≥ 2.

The set of Weierstrass points on X consists of all points s such that S admits
a meromorphic function with a single pole of order less than g + 1 at s.

The surface S is called hyperelliptic if it has precisely 2g + 2 Weierstrass
points. Any closed Riemann surface of genus two is hyperelliptic.

Proposition 3.311. S is hyperelliptic if and only if there exists a conformal
involution J (the hyperelliptic involution) that fixes exactly 2g + 2 points;
these fixed points are the Weierstrass points, and J is the unique conformal
involution with exactly 2g + 2 fixed points.

Theorem 3.2. (a) Let σ be an involutive orientation-preserving symmetry
of S that is not the identity. Suppose that σ has a fixed point s. Then s is
a singularity of the vortex velocity field. (b) Let σ1 and σ2 be two different
orientation-reversing symmetries of S. Suppose that s is a fixed point of
both. Then s is a singularity of the vortex velocity field.

Theorem 3.4. Every Weierstrass point of S is an equilibrium of the equations
of motion of a single vortex on S.

Bolza’s surface has several discrete symmetries and involutions, described
with details in Ragazzo’s paper.

These are obvious: the eight rotations

z → eiκπ/4z, κ = 1, ..., 8,

that are orientation-preserving symmetries and the eight reflections that are
orientation-reversing symmetries,

z → eiκπ/4z̄, κ = 1, ..., 8.

These are non-obvious: the involutions β1, β2 defined in eq. (4.1). Figs. 2
and 3 depict them. Fig. 4 explains the 96 symmetries of Bolza’s surface.

Clodoaldo: are these 96 symmetries relevant for the vortex system?

11Farkas HM, Kra I. 1980, Riemann surfaces, III. 7.9 .
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Figure 1 from Ragazzo. The eight vertices of the octagon represent the
same point and opposite sides represent the same geodesic arc. FX and the
hyperbolic metric are invariant under: eight rotations in multiples by π/4
and eight reflections across eight axes of symmetry (four of them connecting
opposite vertices and four of them bisecting opposite sides). The geodesic
triangle shown in the figure (with sides a, b, and half of a side of the octagon)
is a fundamental domain in FX for this group of 16 symmetries. The angles
in the figure are p = π/8 and q = π/4 The Euclidean lengths of the segments

a, b and c are E(a) =
√√

2− 1, E(b) = 2−1/4 and E(c) =
√

(
√

2− 1)/2
respectively. The hyperbolic lengths of the segments a and b, which are
geodesic arcs, are `(a) = 2 arctanhE(a) and `(b) = 2 arctanhE(b) The con-
formal involution z → −z fixes the six points represented by small balls,
that correspond to the six Weierstrass points of Bolza’s surface.

Figures 2-4, next, depict two further involutions β1, β2.

9



The geodesic triangle T
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96 symmetries
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8 Implementation: mapping FBolza to the unit disk?

We propose to compute and depict trajectories and Poincaré sections using
as coordinates a complex variable w in the unit disk, that is conformally
mapped to FBolza:

z = z(w), |w| ≤ 1 , z ∈ FBolza. (5)

The vertices zk of the octogon FBolza are mapped uniformly in the unit circle
|w| = 1. This approach may please a numerical analyst: the π/4 kinks in
the fundamental domain are smoothed, and one can use refined meshes near
the corresponding wκ.

This map can be constructed explicitly. Using the symmetries of Bolza’s
surface, the conformal map (5) can be reduced to triangular maps. This is
done in appendix C. The same method can be applied to all generalized
Bolza surfaces, of genus κ ≥ 2. They correspond to regular 4κ-gons12.

It remains to be seen if conformal maps of an irregular fundamental domain
could be constructed for an arbitrary fuchsian group. Perhaps this could
be of interest to a Teichmüller theorist, all information about the moduli is
encoded in the conformal map.

The “onion”. We add another possibility for visualization, that could be
aesthetically appealing : map via stereographic projection from the south
pole the northern hemisphere of S2 ⊂ R3 to the unit disk |w| ≤ 1.

What is the point about mapping to the northern hemisphere? All replicas
of FBolza will correspond either the south or the north hemispheres13. This
is due to the old and honorable reflection principle for complex functions.

The philosophical point is this: in the (Escher like) tesselation of the Poincaré
disk via replicas of FBolza, their areas, as measured in Euclidian eyes, shrink
fast as one approaches the unit circle.

12https://hal.archives-ouvertes.fr/LORIA/hal-03080125v1

https://arxiv.org/abs/2103.05960, https://hal.inria.fr/hal-01276386
13This is like scissoring a polyhedrall surface to planify it. To track layers of this self

covering object is the task for group or graph theorists, choosing arbitrary paths from the
origin to a given point in the Poincaré disk.
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This tesselation of Poicaré disk is replaced by a ‘hollow onion’, where the
hemispherical replicas are all congruent in the Euclidian sense.

Somehow his may bring us a feeling of justice. We kind of everted curvature
-1 to curvature +1.

Proving the pudding would show if the idea is useful numerically. Since the
maximum area distortion from the disk to the hemisphere is 2, we will just
work the conformal map from FBolza to the unit disk.

The replicas shrink fast in Euclidian eyes

13



Final comments

Should we start from scratch and try to compute the spectrum (eigenvalues
+ eigenfunctions) of Bolza’s surface? From this data obtained by first prin-
ciple we could derive the Green and Robin functions.

In the Appendix we suggest a numerical method based upon the conformal
mapping approach. We wonder if will be competitive with methods cur-
rently in use by experts14.

As a first step, we propose a compromise. We would take advantage from
using the already known eigenvalues ≤ 1000 given in the aforementioned
web site of A. Strohmaier. So the task would be solely of finding the kernel
of large linear systems.

We suggest applying finite differences in polar coordinates (rather that using
finite elements or using trigonometric base functions). Near the vertices, to
provide more precision, it is trivial to refine the polar coordinates grid.

To study the vortex pair system near the diagonal, one would like also to get
hold of Batman’s function B. A numerical method is in order to compute
the leading term m2 of its expansion near the diagonal, and the directional
derivatives dm2.Vi .

Ideally one wants a code to compute R, G, B, m2 and their derivatives,
alowing the fuchsian group to vary. With an algebraic description of the
group generators of Γ, the above method should work the same way, once
one could produce numerically a representative number of eigenvalues and
eigenfunctions.

14https://arxiv.org/pdf/1110.2150.pdf
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Appendices

A Eigenfunctions of Bolza’s: a poor man’s way

We now suggest a procedure that probably has not been implemented yet.
One of us (JK) has outlined the idea in a short note (circa 1983?) at the
Seminario Brasileiro de Análise. It is a long shot, and we may shot our own
foot. But if it is doable it may have some interest to the experts.

The idea is use the the conformal mappings that we described in the previous
section so that the spectral problem in Bolza’s surface (represented as the
fundamental octogon z ∈ FBolza) becomes an equivalent spectral problem.
Conceptually we should do it in the hemisphere, but as we mentioned, we
think it will be just as numerically efficient to do it in the unit disk of the
w = u+ iv-plane.

The spectral problem will be

Lλφ = 0 , Lλ = ∆− λm(r, θ) I (6)

where

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

is the usual Laplacian operator in polar coordinates. Eigenfuntions are the
same: just compose back with the map from w = r exp(iθ) to z.

Boundary conditions on the eight arcs of the equator correspond uniformly,
the same conditions that in z ∈ FBolza.

Let us explain how the “mass” term m(r, θ) is computed.

Recall that in an isothermal chart z = x+ iy on a surface S with metric g,
the metric writes locally as ds2 = h(z, z̄) |dz|2. The the Laplace-Beltrami
operator is

∆ = (1/h)(∂2/∂x2 + ∂2/∂y2).

For the hyperbolic metric in Poincaré disk, h = 4/(1−|z|2)2, and hyperbolic
Laplacian in FBolza ⊂ D is therefore

∆D =
(1− |z|2)2

4

(
∂2/∂x2 + ∂2/∂y2

)
.
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Let us interpret the w = u + iv as coordinates in X, parametrizing the
fundamental domain FBolza. In these, the metric becomes

ds2
H =

4

(1− |z(w)|2)2

∣∣∣ dz
dw

∣∣∣2 |dw|2 (7)

so that the Laplacian is

∆H =
(1− |z(w)|2)2

4 | dzdw |2
(
∂2/∂u2 + ∂2/∂v2

)
, |w| ≤ 1.

The spectral problem will have the above form (6), with

m =
4 |dz/dw|2

(1− |z(w)|2)2
, w = r eiθ, 0 ≤ r ≤ 1 (8)

The denominator in m does not vanish: its minimum value occurs at the
vertices

zκ =
1

21/4
wκ, 0 ≤ κ ≤ 7 .

corresponding to
wκ = ei(

π
8

+κπ
4

)).

The numerator will be computed using the intermediary ξ-half plane,

|dz/dw| = |dz/dξ dξ/dw| = |dz/dξ|/|dw/dξ|. (9)

It turns out that it suffices to know z = z(ξ) and w = w(ξ) in the triangles
T and P . The vertices of the triangles will correspond to ξ = 0 (mapped
to the origin), ξ = 1 (mapped to points in the positive real axis), ξ = ∞
(mapped to points in the π/8-ray).

In the quotient (9) the singularities corresponding to ξ = 0 and ξ = 1 dis-
appear. But not at ξ =∞.

It seems that the numerical challenge is to expand and match the expansions
z = z(ξ) and w = w(ξ) near ξ = ∞, in order find a good approximation
for z = z(w) near the zκ. What we already know is that the map w → z
from the unit circle to the fundamental domain will have singularities only
at vertices wκ:

z − zκ ∼ (w − wκ)1/4.

Whatever might be the bad behavior the solution in the (r, θ) coordinates, it
should be neutralized when returning to the original z-coordinates in H. If
this behavior is theoretically understood, one could factor it out and apply
a numerical method to compute the regular part.

16



B The unit disk or hemisphere to represent FBolza

The fundamental domain FBolza inside the unit Poincaré disk is a regular
octagon with circular arcs as sides. The vertices are at radius 2−1/4 and
the arcs making a π/4 angle. Using the distance formula, the diameter is
easily found to be (I guess) 4 tanh−1(2−1/4) = 4.8969..., and the systole is
(see wikipedia page show it, is it where I think? 2 cosh−1(1+

√
2) = 3.05784...

The Schwarz-Christoffel technique to conformally map rectilinear polygons
to a half plane can be generalized to polygons with circular arcs15.

We now show how to construct in closed form a conformal mapping F of
the unit disk in the w plane to the fundamental domain z ∈ FBolza. This
map has singularities like (w − wκ)1/4, wκ = ei(π/8+κπ/4).

Taking into account the discrete symmetry, it suffices to find a mapping

F : w ∈ P → z ∈ T

from the the ‘pizza’ triangle P with angles π/8, π/2, π/2, which is 1/16 of
in the unit w-disc, to the triangular region T ⊂ FBolza, joining the origin to
consecutive vertices (which is 1/16 of the fundamental domain having the
concave arc, the corresponding angles being π/8, π/2, π/8). Such triangular
maps are given explicitly via hypergeometric functions16. By the reflection
principle applied 16 times this map F extends to w in the unit disk to the
whole of FBolza.

Let an upper half plane be ξ = u+ iv, v ≤ 0 be used as intermediary. Then
F will be constructed as the composition F = F2 ◦ F−1

1 : w → ξ → z where
F1, F2 are conformal maps of the ξ-half plane to the triangles w ∈ P and
z ∈ T respectively.

15See Nehari, Conformal mapping, V.7, p. 198-209 on, and
https://doi.org/10.1016/0377-0427(93)90284-I, //doi.org/10.1137/0908003
16I found the construction on a short technical report M. Harmer and G. Martin that

also suggests the ideia to transform the Laplace-Beltrami operator
https://www.math.auckland.ac.nz/Research/Reports/Series/499.pdf
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Summarizing the derivations leading to the mass function m

We have (8):

m =
4 |dz/dw|2

(1− |z(w)|2)2
, w = r eiθ, 0 ≤ r ≤ 1.

The denominator does not vanish. max |z(w)| = 2−1/4 and z(w) is con-
tinuous at the boundaryt |w| = 1 (but not differentiable at the wκ).

The factor |dz/dw| simplifies as

|dz/dw| = γT
γP

|FP2 |2

|F T2 |2
(10)

and it will be the matter of computing the ratio near infinity of two hyper-
geometric functions, with α1 = 1/8 in both, α3 = 1/2 in both, and only
differing in

αT2 = 1/8, αP2 = 1/2.

This is because the two wronskians (25) are the same so they cancel out.

The numerical factors γT , γP are given below in (19), (24).
The F2’s are hypergeometric functions with parameters a, b, c given by:

For triangle T : α1 = 1/8, α3 = 1/2, α2 = 1/8

a =

b =

c =

For triangle P : α1 = 1/8, α3 = 1/2, α2 = 1/2

a =

b =

c =

The hypergeometric functions have poles
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C Mapping curvilinear triangles to upper half plane

Consider a polygon in the z-plane with circular arcs whose sides make angles
παi at the vertices Ai, i = 1, · · ·n. We want it to be the conformal image

z = f(ξ), ξ in the upper half plane. (11)

The vertices will correspond to points ai on the real axis. Near the ai,
f(ξ) = (ξ − ai)αi times a regular function, due to the angle conditions.

Using the Schwarzian derivative

{f, z} = (f ′′/f ′)′ − (1/2) (f ′′/f ′)2

and the Liouville boundedness theorem trick (used to show that a function
is constant), it turns out that

{f, z} =
1

2

n∑
κ=1

1− α2
k

(ξ − aκ)2
+

n∑
κ=1

βκ
ξ − aκ

with the accessory parameters βκ, a third order ODE. The β′s satisfy three
compatibility conditions17. Making f = F1/F2 one reduces to a second or-
der linear ODE such that F1, F2 are linearly independent solutions18.

For triangles, the linear ODE turns out to be the hypergeometric19.

17Nehari, Conformal mapping, chapter 7, specially eqs (56, 58, 59).
18Details can be seen in Nehari, Conformal mappping, chapter 7, pg. 198-209, especially

equations (56,58,59).
19Nehari, formulas (61-65, 72).
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Triangle T in Poincaré z-disk20.

Let T be a geodesic triangle in the Poincaré disk |z| ≤ 1, where the sides
meet at angles πα1, πα2, πα3 at the vertices A1, A2, A3. We take A1 at the
origin, A3 in the positive real axis, and A2 on the ray eπα1 .

We want the sides A1A2, A1A3 to be rectilinear, while A2A3 is the arc
of a (concave) circle, whose extension meets the unit circle at right angles.
These conditions give an uniquely defined geodesic triangle in Poincaré disk.

In the example of our interest, the triangle T ⊂ FBolza has angles

α1 = π/8, α2 = π/8, α3 = π/2 .

In general, α1 + α2 + α3 < 1. We want T to be the conformal image of

z = fT (ξ), ξ in the upper half plane. (12)

The vertices will correspond to

a1 = 0, a2 =∞, a3 = 1

on the real axis:
A1 = f(0), A2 = f(∞), A3 = f(1) (13)

Proposition 1 The conformal map will be given by

z = f(ξ) = γ F1(ξ)/F2(ξ) (14)

where F1, F2 are specially chosen (N. p. 206, p. 314) linearly independent
solutions of the hypergeometric equation21

ξ(1− ξ)F ′′(ξ) + [c− (a+ b+ 1)ξ]F ′(ξ)− abF = 0 (15)

with parameters

a =
1

2
(1− α1 + α2 − α3)

b =
1

2
(1− α1 − α2 − α3)

c = 1− α1.

(16)

20We follow the notes by Harmer and Martin.
21https://dlmf.nist.gov/15

https://en.wikipedia.org/wiki/Hypergeometric_function

https://mathworld.wolfram.com/HypergeometricFunction.html

https://www.mathworks.com/help/symbolic/hypergeom.html

https://keisan.casio.com/exec/system/1349143084
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To grit,

F2(ξ) = F (ξ; a, b, c) (the hypergeometric)

F1(ξ) = ξ1−c F (ξ; a′, b′, c) (note that 1− c = α1)
(17)

where

a′ = a− c+ 1 =
1

2
(1 + α1 + α2 − α3)

b′ = b− c+ 1 =
1

2
(1 + α1 − α2 − α3)

c′ = 2− c = 1 + α1

(18)

Finally, for the geodesic triangle T , one obtains

γT =

√
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)

Γ(1− α1)

Γ(1 + α1)

Γ( 1
2

(1 + α1 + α2 + α3)

Γ( 1
2

(1− α1 + α2 + α3))

Γ( 1
2

(1 + α1 + α2 − α3))

Γ( 1
2

(1− α1 + α2 − α3))
.

(19)

(20)

(using the Gamma function relations with the hypergeometric equation22).

Outline of the proof. Since 0 < α1 < 1, we have 0 < c(= 1 − α1) < 1.
We choose the branch of ξ1−c so that ξ1−c is real on the positive real axis
and z1−c = |z|1−c eiπ(1−c) on the negative real axis.

It is known that F1 is a linearly independent solution of the hypergeometric
equation with the same parameters (a, b and c) as F2.

The auxiliary circle Co is centered in A1 and intersects S at right angles.

22https://en.wikipedia.org/wiki/Gamma_function

https://keisan.casio.com/exec/system/1180573444
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It follows from the properties of the hypergeometric ODE that

Lemma 1 For γ = 1

A1 = 0

A3 = f(1) = F (1; a′, b′, c′)/F (1; a, b, c) (in the positive real axis)

=
Γ(1 + α1)

Γ(1− α1)

Γ(1
2 (1− α1 + α2 + α3))

Γ(1
2 (1 + α1 + α2 + α3))

Γ(1
2 (1− α1 − α2 + α3))

Γ(1
2 (1 + α1 − α2 + α3))

A2 = eiπα1
Γ(1 + α1)

Γ(1− α1)

Γ(1
2 (1− α1 + α2 + α3))

Γ(1
2 (1 + α1 + α2 + α3))

Γ(1
2 (1− α1 − α2 + α3))

Γ(1
2 (1 + α1 + α2 − α3))

(21)

A1A2 and A1A3 are straight lines, and by construction the the angles at
A1, A2 and A3 are the correct ones.

It remains only to find the scale factor γ. This is achieved by the following
clever argument.

Rescale f → γf so that the radius of Co equals 1.

Then Co can be interpreted as Poincaré disk and the triangle A,A2, A3 is a
geodesic triangle. The hyperbolic cosine rule23 gives

cosh(ρ(A1, A2)) =
cos(πα1) cos(πα2) + cos(πα3)

sin(πα1) sin(πα2)

On the other hand the Euclidian length is tanh(ρ(A1, A2)/2)) which is

tanh(ρ(A1, A2)/2)) =

√
cosh(ρ(A1, A2))− 1

cosh(ρ(A1, A2)) + 1
=

√
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)

Comparing with the value of |A2| above, we get

γ =

√
cos(πα1 + πα2) + cos(πα3)

cos(πα1 − πα2) + cos(πα3)

Γ(1− α1)

Γ(1 + α1)

Γ(1
2 (1 + α1 + α2 + α3)

Γ(1
2 (1− α1 + α2 + α3))

Γ(1
2 (1 + α1 + α2 − α3))

Γ(1
2 (1− α1 + α2 − α3))

. �
23A. F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, Berlin, 1983.
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Triangle P in the w-plane.

The map w = fP (ξ) is defined in the same way - and the scale factor is
easier to find.

For an ‘honest ’ pizza slice (such that 0 < α1 < 1) and α2 = α3 = 1/2, the
same formulas (14, 15, 16, 17, 18) hold. In the Bolza surface α1 = 1/8. We
have:

|A2| = |A3| =
Γ(1 + α1)

Γ(1− α1)

Γ(1
2 (2− α1))

Γ(1
2 (2 + α1))

Γ(1
2 (1− α1))

Γ(1
2 (1 + α1))

(22)

In the hypergeometric functions F1, F2 (17) we insert

a =
1

2
(1− α1) , b = −α1

2
, c = 1− α1 (23)

and the scaling factor is (all arguments of the Gamma functions in (22) are
positive)

γP = 1/|A2| (with the above A2). (24)

Differentiating z = fT (ξ) and w = fP (ξ)

The procedures are the same. Our functions are of the same form, namely
quotient of linearly independent solutions of the same hypergeometric ODE,

f(ξ) = γ F1(ξ)/F2(ξ)

Then

df/dξ = γ
W (F1, F2)

F 2
2

where
W (F1, F2) = F1,zF2 − F2,zF1

is the Wronskian. But it is known that the Wronskian of two solutions of
the same hypergeometric equation satisfies the linear ODE

dW/dξ =
c− (a+ b+ 1)ξ

ξ(1− ξ)
W.

and it follows that24

W (F1, F2) = α1(1− ξ)α3−1ξα1−1 (25)

This trick expedites using the differentiation formula for a hypergeometric
function25.

24https://dlmf.nist.gov/15.10, formula 15.10.3 .
25https://dlmf.nist.gov/15.5
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